scholarly journals Calibration drift in regression and machine learning models for acute kidney injury

2017 ◽  
Vol 24 (6) ◽  
pp. 1052-1061 ◽  
Author(s):  
Sharon E Davis ◽  
Thomas A Lasko ◽  
Guanhua Chen ◽  
Edward D Siew ◽  
Michael E Matheny

Abstract Objective Predictive analytics create opportunities to incorporate personalized risk estimates into clinical decision support. Models must be well calibrated to support decision-making, yet calibration deteriorates over time. This study explored the influence of modeling methods on performance drift and connected observed drift with data shifts in the patient population. Materials and Methods Using 2003 admissions to Department of Veterans Affairs hospitals nationwide, we developed 7 parallel models for hospital-acquired acute kidney injury using common regression and machine learning methods, validating each over 9 subsequent years. Results Discrimination was maintained for all models. Calibration declined as all models increasingly overpredicted risk. However, the random forest and neural network models maintained calibration across ranges of probability, capturing more admissions than did the regression models. The magnitude of overprediction increased over time for the regression models while remaining stable and small for the machine learning models. Changes in the rate of acute kidney injury were strongly linked to increasing overprediction, while changes in predictor-outcome associations corresponded with diverging patterns of calibration drift across methods. Conclusions Efficient and effective updating protocols will be essential for maintaining accuracy of, user confidence in, and safety of personalized risk predictions to support decision-making. Model updating protocols should be tailored to account for variations in calibration drift across methods and respond to periods of rapid performance drift rather than be limited to regularly scheduled annual or biannual intervals.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Cheng Qu ◽  
Lin Gao ◽  
Xian-qiang Yu ◽  
Mei Wei ◽  
Guo-quan Fang ◽  
...  

Background. Acute kidney injury (AKI) has long been recognized as a common and important complication of acute pancreatitis (AP). In the study, machine learning (ML) techniques were used to establish predictive models for AKI in AP patients during hospitalization. This is a retrospective review of prospectively collected data of AP patients admitted within one week after the onset of abdominal pain to our department from January 2014 to January 2019. Eighty patients developed AKI after admission (AKI group) and 254 patients did not (non-AKI group) in the hospital. With the provision of additional information such as demographic characteristics or laboratory data, support vector machine (SVM), random forest (RF), classification and regression tree (CART), and extreme gradient boosting (XGBoost) were used to build models of AKI prediction and compared to the predictive performance of the classic model using logistic regression (LR). XGBoost performed best in predicting AKI with an AUC of 91.93% among the machine learning models. The AUC of logistic regression analysis was 87.28%. Present findings suggest that compared to the classical logistic regression model, machine learning models using features that can be easily obtained at admission had a better performance in predicting AKI in the AP patients.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jiawei He ◽  
Jin Lin ◽  
Meili Duan

Background: Sepsis-associated acute kidney injury (AKI) is frequent in patients admitted to intensive care units (ICU) and may contribute to adverse short-term and long-term outcomes. Acute kidney disease (AKD) reflects the adverse events developing after AKI. We aimed to develop and validate machine learning models to predict the occurrence of AKD in patients with sepsis-associated AKI.Methods: Using clinical data from patients with sepsis in the ICU at Beijing Friendship Hospital (BFH), we studied whether the following three machine learning models could predict the occurrence of AKD using demographic, laboratory, and other related variables: Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM), decision trees, and logistic regression. In addition, we externally validated the results in the Medical Information Mart for Intensive Care III (MIMIC III) database. The outcome was the diagnosis of AKD when defined as AKI prolonged for 7–90 days according to Acute Disease Quality Initiative-16.Results: In this study, 209 patients from BFH were included, with 55.5% of them diagnosed as having AKD. Furthermore, 509 patients were included from the MIMIC III database, of which 46.4% were diagnosed as having AKD. Applying machine learning could successfully achieve very high accuracy (RNN-LSTM AUROC = 1; decision trees AUROC = 0.954; logistic regression AUROC = 0.728), with RNN-LSTM showing the best results. Further analyses revealed that the change of non-renal Sequential Organ Failure Assessment (SOFA) score between the 1st day and 3rd day (Δnon-renal SOFA) is instrumental in predicting the occurrence of AKD.Conclusion: Our results showed that machine learning, particularly RNN-LSTM, can accurately predict AKD occurrence. In addition, Δ SOFAnon−renal plays an important role in predicting the occurrence of AKD.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246306
Author(s):  
Jialin Liu ◽  
Jinfa Wu ◽  
Siru Liu ◽  
Mengdie Li ◽  
Kunchang Hu ◽  
...  

Purpose The goal of this study is to construct a mortality prediction model using the XGBoot (eXtreme Gradient Boosting) decision tree model for AKI (acute kidney injury) patients in the ICU (intensive care unit), and to compare its performance with that of three other machine learning models. Methods We used the eICU Collaborative Research Database (eICU-CRD) for model development and performance comparison. The prediction performance of the XGBoot model was compared with the other three machine learning models. These models included LR (logistic regression), SVM (support vector machines), and RF (random forest). In the model comparison, the AUROC (area under receiver operating curve), accuracy, precision, recall, and F1 score were used to evaluate the predictive performance of each model. Results A total of 7548 AKI patients were analyzed in this study. The overall in-hospital mortality of AKI patients was 16.35%. The best performing algorithm in this study was XGBoost with the highest AUROC (0.796, p < 0.01), F1(0.922, p < 0.01) and accuracy (0.860). The precision (0.860) and recall (0.994) of the XGBoost model rank second among the four models. Conclusion XGBoot model had obvious advantages of performance compared to the other machine learning models. This will be helpful for risk identification and early intervention for AKI patients at risk of death.


Healthcare ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1662
Author(s):  
Tao Han Lee ◽  
Jia-Jin Chen ◽  
Chi-Tung Cheng ◽  
Chih-Hsiang Chang

Acute kidney injury (AKI) is a common complication of hospitalization that greatly and negatively affects the short-term and long-term outcomes of patients. Current guidelines use serum creatinine level and urine output rate for defining AKI and as the staging criteria of AKI. However, because they are not sensitive or specific markers of AKI, clinicians find it difficult to predict the occurrence of AKI and prescribe timely treatment. Advances in computing technology have led to the recent use of machine learning and artificial intelligence in AKI prediction, recent research reported that by using electronic health records (EHR) the AKI prediction via machine-learning models can reach AUROC over 0.80, in some studies even reach 0.93. Our review begins with the background and history of the definition of AKI, and the evolution of AKI risk factors and prediction models is also appraised. Then, we summarize the current evidence regarding the application of e-alert systems and machine-learning models in AKI prediction.


2019 ◽  
Vol 3 (s1) ◽  
pp. 60-61
Author(s):  
Kadie Clancy ◽  
Esmaeel Dadashzadeh ◽  
Christof Kaltenmeier ◽  
JB Moses ◽  
Shandong Wu

OBJECTIVES/SPECIFIC AIMS: This retrospective study aims to create and train machine learning models using a radiomic-based feature extraction method for two classification tasks: benign vs. pathologic PI and operation of benefit vs. operation not needed. The long-term goal of our study is to build a computerized model that incorporates both radiomic features and critical non-imaging clinical factors to improve current surgical decision-making when managing PI patients. METHODS/STUDY POPULATION: Searched radiology reports from 2010-2012 via the UPMC MARS Database for reports containing the term “pneumatosis” (subsequently accounting for negations and age restrictions). Our inclusion criteria included: patient age 18 or older, clinical data available at time of CT diagnosis, and PI visualized on manual review of imaging. Cases with intra-abdominal free air were excluded. Collected CT imaging data and an additional 149 clinical data elements per patient for a total of 75 PI cases. Data collection of an additional 225 patients is ongoing. We trained models for two clinically-relevant prediction tasks. The first (referred to as prediction task 1) classifies between benign and pathologic PI. Benign PI is defined as either lack of intraoperative visualization of transmural intestinal necrosis or successful non-operative management until discharge. Pathologic PI is defined as either intraoperative visualization of transmural PI or withdrawal of care and subsequent death during hospitalization. The distribution of data samples for prediction task 1 is 47 benign cases and 38 pathologic cases. The second (referred to as prediction task 2) classifies between whether the patient benefitted from an operation or not. “Operation of benefit” is defined as patients with PI, be it transmural or simply mucosal, who benefited from an operation. “Operation not needed” is defined as patients who were safely discharged without an operation or patients who had an operation, but nothing was found. The distribution of data samples for prediction task 2 is 37 operation not needed cases and 38 operation of benefit cases. An experienced surgical resident from UPMC manually segmented 3D PI ROIs from the CT scans (5 mm Axial cut) for each case. The most concerning ~10-15 cm segment of bowel for necrosis with a 1 cm margin was selected. A total of 7 slices per patient were segmented for consistency. For both prediction task 1 and prediction task 2, we independently completed the following procedure for testing and training: 1.) Extracted radiomic features from the 3D PI ROIs that resulted in 99 total features. 2.) Used LASSO feature selection to determine the subset of the original 99 features that are most significant for performance of the prediction task. 3.) Used leave-one-out cross-validation for testing and training to account for the small dataset size in our preliminary analysis. Implemented and trained several machine learning models (AdaBoost, SVM, and Naive Bayes). 4.) Evaluated the trained models in terms of AUC and Accuracy and determined the ideal model structure based on these performance metrics. RESULTS/ANTICIPATED RESULTS: Prediction Task 1: The top-performing model for this task was an SVM model trained using 19 features. This model had an AUC of 0.79 and an accuracy of 75%. Prediction Task 2: The top-performing model for this task was an SVM model trained using 28 features. This model had an AUC of 0.74 and an accuracy of 64%. DISCUSSION/SIGNIFICANCE OF IMPACT: To the best of our knowledge, this is the first study to use radiomic-based machine learning models for the prediction of tissue ischemia, specifically intestinal ischemia in the setting of PI. In this preliminary study, which serves as a proof of concept, the performance of our models has demonstrated the potential of machine learning based only on radiomic imaging features to have discriminative power for surgical decision-making problems. While many non-imaging-related clinical factors play a role in the gestalt of clinical decision making when PI presents, we have presented radiomic-based models that may augment this decision-making process, especially for more difficult cases when clinical features indicating acute abdomen are absent. It should be noted that prediction task 2, whether or not a patient presenting with PI would benefit from an operation, has lower performance than prediction task 1 and is also a more challenging task for physicians in real clinical environments. While our results are promising and demonstrate potential, we are currently working to increase our dataset to 300 patients to further train and assess our models. References DuBose, Joseph J., et al. “Pneumatosis Intestinalis Predictive Evaluation Study (PIPES): a multicenter epidemiologic study of the Eastern Association for the Surgery of Trauma.” Journal of Trauma and Acute Care Surgery 75.1 (2013): 15-23. Knechtle, Stuart J., Andrew M. Davidoff, and Reed P. Rice. “Pneumatosis intestinalis. Surgical management and clinical outcome.” Annals of Surgery 212.2 (1990): 160.


Data is the most crucial component of a successful ML system. Once a machine learning model is developed, it gets obsolete over time due to presence of new input data being generated every second. In order to keep our predictions accurate we need to find a way to keep our models up to date. Our research work involves finding a mechanism which can retrain the model with new data automatically. This research also involves exploring the possibilities of automating machine learning processes. We started this project by training and testing our model using conventional machine learning methods. The outcome was then compared with the outcome of those experiments conducted using the AutoML methods like TPOT. This helped us in finding an efficient technique to retrain our models. These techniques can be used in areas where people do not deal with the actual working of a ML model but only require the outputs of ML processes


Author(s):  
Benedikt Mangold ◽  
Johannes Stübinger

The efficient-market hypothesis states that it is impossible to beat the market, as the price reflects all available information. Applied to bookmaker odds for football games, there should not be a systematic way of winning money on the long run.However, we show that by using simple machine learning models we can systematically outperform the markets belief manifested through the bookmakers odds. The effect of this inefficiency is diminishing over time, which indicates that the knowledge that has been derived from and the pure amount of the data is also reflected in the odds in recent times.We give some insights how this effect differs across major football leagues in Europe, which algorithms are performing best and statistics on the ROI using machine learning in football betting. Additionally, we share how the simulation study has been designed in more detail.


Sign in / Sign up

Export Citation Format

Share Document