scholarly journals Predictive article recommendation using natural language processing and machine learning to support evidence updates in domain-specific knowledge graphs

JAMIA Open ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 332-337
Author(s):  
Bhuvan Sharma ◽  
Van C Willis ◽  
Claudia S Huettner ◽  
Kirk Beaty ◽  
Jane L Snowdon ◽  
...  

Abstract Objectives Describe an augmented intelligence approach to facilitate the update of evidence for associations in knowledge graphs. Methods New publications are filtered through multiple machine learning study classifiers, and filtered publications are combined with articles already included as evidence in the knowledge graph. The corpus is then subjected to named entity recognition, semantic dictionary mapping, term vector space modeling, pairwise similarity, and focal entity match to identify highly related publications. Subject matter experts review recommended articles to assess inclusion in the knowledge graph; discrepancies are resolved by consensus. Results Study classifiers achieved F-scores from 0.88 to 0.94, and similarity thresholds for each study type were determined by experimentation. Our approach reduces human literature review load by 99%, and over the past 12 months, 41% of recommendations were accepted to update the knowledge graph. Conclusion Integrated search and recommendation exploiting current evidence in a knowledge graph is useful for reducing human cognition load.

Data ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 71
Author(s):  
Gonçalo Carnaz ◽  
Mário Antunes ◽  
Vitor Beires Nogueira

Criminal investigations collect and analyze the facts related to a crime, from which the investigators can deduce evidence to be used in court. It is a multidisciplinary and applied science, which includes interviews, interrogations, evidence collection, preservation of the chain of custody, and other methods and techniques of investigation. These techniques produce both digital and paper documents that have to be carefully analyzed to identify correlations and interactions among suspects, places, license plates, and other entities that are mentioned in the investigation. The computerized processing of these documents is a helping hand to the criminal investigation, as it allows the automatic identification of entities and their relations, being some of which difficult to identify manually. There exists a wide set of dedicated tools, but they have a major limitation: they are unable to process criminal reports in the Portuguese language, as an annotated corpus for that purpose does not exist. This paper presents an annotated corpus, composed of a collection of anonymized crime-related documents, which were extracted from official and open sources. The dataset was produced as the result of an exploratory initiative to collect crime-related data from websites and conditioned-access police reports. The dataset was evaluated and a mean precision of 0.808, recall of 0.722, and F1-score of 0.733 were obtained with the classification of the annotated named-entities present in the crime-related documents. This corpus can be employed to benchmark Machine Learning (ML) and Natural Language Processing (NLP) methods and tools to detect and correlate entities in the documents. Some examples are sentence detection, named-entity recognition, and identification of terms related to the criminal domain.


2019 ◽  
pp. 1-8 ◽  
Author(s):  
Tomasz Oliwa ◽  
Steven B. Maron ◽  
Leah M. Chase ◽  
Samantha Lomnicki ◽  
Daniel V.T. Catenacci ◽  
...  

PURPOSE Robust institutional tumor banks depend on continuous sample curation or else subsequent biopsy or resection specimens are overlooked after initial enrollment. Curation automation is hindered by semistructured free-text clinical pathology notes, which complicate data abstraction. Our motivation is to develop a natural language processing method that dynamically identifies existing pathology specimen elements necessary for locating specimens for future use in a manner that can be re-implemented by other institutions. PATIENTS AND METHODS Pathology reports from patients with gastroesophageal cancer enrolled in The University of Chicago GI oncology tumor bank were used to train and validate a novel composite natural language processing-based pipeline with a supervised machine learning classification step to separate notes into internal (primary review) and external (consultation) reports; a named-entity recognition step to obtain label (accession number), location, date, and sublabels (block identifiers); and a results proofreading step. RESULTS We analyzed 188 pathology reports, including 82 internal reports and 106 external consult reports, and successfully extracted named entities grouped as sample information (label, date, location). Our approach identified up to 24 additional unique samples in external consult notes that could have been overlooked. Our classification model obtained 100% accuracy on the basis of 10-fold cross-validation. Precision, recall, and F1 for class-specific named-entity recognition models show strong performance. CONCLUSION Through a combination of natural language processing and machine learning, we devised a re-implementable and automated approach that can accurately extract specimen attributes from semistructured pathology notes to dynamically populate a tumor registry.


2021 ◽  
Vol 75 (3) ◽  
pp. 94-99
Author(s):  
A.M. Yelenov ◽  
◽  
A.B. Jaxylykova ◽  

This research focuses on a comparative study of the Named Entity Recognition task for scientific article texts. Natural language processing could be considered as one of the cornerstones in the machine learning area which devotes its attention to the problems connected with the understanding of different natural languages and linguistic analysis. It was already shown that current deep learning techniques have a good performance and accuracy in such areas as image recognition, pattern recognition, computer vision, that could mean that such technology probably would be successful in the neuro-linguistic programming area too and lead to a dramatic increase on the research interest on this topic. For a very long time, quite trivial algorithms have been used in this area, such as support vector machines or various types of regression, basic encoding on text data was also used, which did not provide high results. The following dataset was used to process the experiment models: Dataset Scientific Entity Relation Core. The algorithms used were Long short-term memory, Random Forest Classifier with Conditional Random Fields, and Named-entity recognition with Bidirectional Encoder Representations from Transformers. In the findings, the metrics scores of all models were compared to each other to make a comparison. This research is devoted to the processing of scientific articles, concerning the machine learning area, because the subject is not investigated on enough properly level.The consideration of this task can help machines to understand natural languages better, so that they can solve other neuro-linguistic programming tasks better, enhancing scores in common sense.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Buzhou Tang ◽  
Hongxin Cao ◽  
Xiaolong Wang ◽  
Qingcai Chen ◽  
Hua Xu

Biomedical Named Entity Recognition (BNER), which extracts important entities such as genes and proteins, is a crucial step of natural language processing in the biomedical domain. Various machine learning-based approaches have been applied to BNER tasks and showed good performance. In this paper, we systematically investigated three different types of word representation (WR) features for BNER, including clustering-based representation, distributional representation, and word embeddings. We selected one algorithm from each of the three types of WR features and applied them to the JNLPBA and BioCreAtIvE II BNER tasks. Our results showed that all the three WR algorithms were beneficial to machine learning-based BNER systems. Moreover, combining these different types of WR features further improved BNER performance, indicating that they are complementary to each other. By combining all the three types of WR features, the improvements inF-measure on the BioCreAtIvE II GM and JNLPBA corpora were 3.75% and 1.39%, respectively, when compared with the systems using baseline features. To the best of our knowledge, this is the first study to systematically evaluate the effect of three different types of WR features for BNER tasks.


2020 ◽  
Vol 10 (18) ◽  
pp. 6429
Author(s):  
SungMin Yang ◽  
SoYeop Yoo ◽  
OkRan Jeong

Along with studies on artificial intelligence technology, research is also being carried out actively in the field of natural language processing to understand and process people’s language, in other words, natural language. For computers to learn on their own, the skill of understanding natural language is very important. There are a wide variety of tasks involved in the field of natural language processing, but we would like to focus on the named entity registration and relation extraction task, which is considered to be the most important in understanding sentences. We propose DeNERT-KG, a model that can extract subject, object, and relationships, to grasp the meaning inherent in a sentence. Based on the BERT language model and Deep Q-Network, the named entity recognition (NER) model for extracting subject and object is established, and a knowledge graph is applied for relation extraction. Using the DeNERT-KG model, it is possible to extract the subject, type of subject, object, type of object, and relationship from a sentence, and verify this model through experiments.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 354
Author(s):  
Tiberiu-Marian Georgescu

This paper describes the development and implementation of a natural language processing model based on machine learning which performs cognitive analysis for cybersecurity-related documents. A domain ontology was developed using a two-step approach: (1) the symmetry stage and (2) the machine adjustment. The first stage is based on the symmetry between the way humans represent a domain and the way machine learning solutions do. Therefore, the cybersecurity field was initially modeled based on the expertise of cybersecurity professionals. A dictionary of relevant entities was created; the entities were classified into 29 categories and later implemented as classes in a natural language processing model based on machine learning. After running successive performance tests, the ontology was remodeled from 29 to 18 classes. Using the ontology, a natural language processing model based on a supervised learning model was defined. We trained the model using sets of approximately 300,000 words. Remarkably, our model obtained an F1 score of 0.81 for named entity recognition and 0.58 for relation extraction, showing superior results compared to other similar models identified in the literature. Furthermore, in order to be easily used and tested, a web application that integrates our model as the core component was developed.


Information ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 41
Author(s):  
Melinda Loubser ◽  
Martin J. Puttkammer

In this paper, the viability of neural network implementations of core technologies (the focus of this paper is on text technologies) for 10 resource-scarce South African languages is evaluated. Neural networks are increasingly being used in place of other machine learning methods for many natural language processing tasks with good results. However, in the South African context, where most languages are resource-scarce, very little research has been done on neural network implementations of core language technologies. In this paper, we address this gap by evaluating neural network implementations of four core technologies for ten South African languages. The technologies we address are part of speech tagging, named entity recognition, compound analysis and lemmatization. Neural architectures that performed well on similar tasks in other settings were implemented for each task and the performance was assessed in comparison with currently used machine learning implementations of each technology. The neural network models evaluated perform better than the baselines for compound analysis, are viable and comparable to the baseline on most languages for POS tagging and NER, and are viable, but not on par with the baseline, for Afrikaans lemmatization.


2019 ◽  
Vol 26 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Qiang Wei ◽  
Yaoyun Zhang ◽  
Muhammad Amith ◽  
Rebecca Lin ◽  
Jenay Lapeyrolerie ◽  
...  

Software tools now are essential to research and applications in the biomedical domain. However, existing software repositories are mainly built using manual curation, which is time-consuming and unscalable. This study took the initiative to manually annotate software names in 1,120 MEDLINE abstracts and titles and used this corpus to develop and evaluate machine learning–based named entity recognition systems for biomedical software. Specifically, two strategies were proposed for feature engineering: (1) domain knowledge features and (2) unsupervised word representation features of clustered and binarized word embeddings. Our best system achieved an F-measure of 91.79% for recognizing software from titles and an F-measure of 86.35% for recognizing software from both titles and abstracts using inexact matching criteria. We then created a biomedical software catalog with 19,557 entries using the developed system. This study demonstrates the feasibility of using natural language processing methods to automatically build a high-quality software index from biomedical literature.


Author(s):  
Xinghui Zhu ◽  
Zhuoyang Zou ◽  
Bo Qiao ◽  
Kui Fang ◽  
Yiming Chen

Knowledge Graph has gradually become one of core drivers advancing the Internet and AI in recent years, while there is currently no normal knowledge graph in the field of agriculture. Named Entity Recognition (NER), one important step in constructing knowledge graphs, has become a hot topic in both academia and industry. With the help of the Bidirectional Long Short-Term Memory Network (Bi-LSTM) and Conditional Random Field (CRF) model, we introduce a method of ensemble learning, and implement a named entity recognition model ELER. Our model achieves good results for the CoNLL2003 data set, the accuracy and F1 value in the best experimental results are respectively improved by 1.37% and 0.7% when compared with the BiLSTM-CRF model. In addition, our model achieves an F1 score of 91% for the agricultural data set AgriNER2018, which proves the validity of ELER model for small agriculture sample data sets and lays a foundation for the construction of agricultural knowledge graphs.


2021 ◽  
pp. 1-12
Author(s):  
Yingwen Fu ◽  
Nankai Lin ◽  
Xiaotian Lin ◽  
Shengyi Jiang

Named entity recognition (NER) is fundamental to natural language processing (NLP). Most state-of-the-art researches on NER are based on pre-trained language models (PLMs) or classic neural models. However, these researches are mainly oriented to high-resource languages such as English. While for Indonesian, related resources (both in dataset and technology) are not yet well-developed. Besides, affix is an important word composition for Indonesian language, indicating the essentiality of character and token features for token-wise Indonesian NLP tasks. However, features extracted by currently top-performance models are insufficient. Aiming at Indonesian NER task, in this paper, we build an Indonesian NER dataset (IDNER) comprising over 50 thousand sentences (over 670 thousand tokens) to alleviate the shortage of labeled resources in Indonesian. Furthermore, we construct a hierarchical structured-attention-based model (HSA) for Indonesian NER to extract sequence features from different perspectives. Specifically, we use an enhanced convolutional structure as well as an enhanced attention structure to extract deeper features from characters and tokens. Experimental results show that HSA establishes competitive performance on IDNER and three benchmark datasets.


Sign in / Sign up

Export Citation Format

Share Document