Mass Loss on Drying for Instant Coffee: Collaborative Study

1980 ◽  
Vol 63 (2) ◽  
pp. 178-179
Author(s):  
William P Clinton ◽  
Paul H Manni ◽  
John M Ferry

Abstract A collaborative study was undertaken to define an acceptable routine working method for determination of mass loss in instant coffee. Fourteen laboratories of 24 invited to participate submitted results. The repeatability standard deviation and coefficient of variation were 0.026 and 0.7%, respectively. The reproducibility standard deviation and coefficient of variation were 0.153 and 3.8%, respectively. The method has been adopted as official first action.

1981 ◽  
Vol 64 (4) ◽  
pp. 1021-1026
Author(s):  
Robert W Dabeka ◽  
Arthur D Mckenzie ◽  
◽  
R A Baetz ◽  
D W Bingham ◽  
...  

Abstract Twelve laboratories analyzed (1 replicate) 12 samples of infant foods – milk, pears, and peas – containing 0.2-5 ppm F. There was one laboratory outlier. Mean coefficients of variation were 7.06% for intralaboratory determination of 3 sets of blind duplicates and 21.6% for interlaboratory determination of 12 samples. Variance analysis for all samples yielded a reproducibility standard deviation of 0.41 ppm; for 3 sets of blind duplicates, repeatability standard deviation was 0.26 ppm and reproducibility standard deviation was 0.32 ppm.


1997 ◽  
Vol 80 (3) ◽  
pp. 469-480 ◽  
Author(s):  
Ivan S Palmer ◽  
Nancy Thiex ◽  
R Allen ◽  
E Alley ◽  
N Anderson ◽  
...  

Abstract A total of 17 laboratories participated in a collaborative study for the determination of selenium in feeds and premixes using either a fluorometric or a continuous hydride generation atomic absorption (HGAA) method. Each collaborator analyzed 16 blind duplicate samples of feed and premixes from various feed manufacturers. The amount of Se in these materials ranged from 0.2 to 5500 μg/g. Six laboratories used only the fluorometric procedure, 8 laboratories used only the hydride generation atomic absorption procedure, and 3 laboratories used both procedures. One laboratory in the fluorometric study and 3 laboratories in the HGAA study were initially excluded because of invalid data. Poor agreement between the blind duplicates indicated probable sample interchange and/or dilution error. The data from 8 laboratories were submitted to statistical analysis, including data from 2 laboratories participating in both studies. The repeatability standard deviation (RSDr) for samples analyzed by the fluorometric procedure ranged from 5.9 to 33%, and the reproducibility standard deviation (RSDR) ranged from 12 to 33%. RSDf for samples analyzed by HGAA ranged from 2.8 to 18%, and RSDR ranged from 4.0 to 36%. Both fluorometric and continuous hydride generation atomic absorption methods for the determination of Se in feeds and premixes have been adopted first action by AOAC INTERNATIONAL.


1989 ◽  
Vol 72 (1) ◽  
pp. 34-37 ◽  
Author(s):  
J Zaalberg

Abstract To determine the precision of standardized analytical methods, interlaboratory experiments are carried out in which several laboratories analyze identical samples from well homogenized batches of material. From the test results, estimates of the standard deviations under repeatability as well as under reproducibility conditions are calculated. In the present work, the experimental designs recommended in the International Standard ISO 5725 have been compared with a design proposed in the draft Netherlands Standard NEN 6303. This has been done by comparing their mathematical models as well as by applying them to the results of a recent collaborative study on the determination of heavy metals in edible oils and fats. The reproducibility standard deviation is estimated equally well with both Standards, but it appeared that the designs given in ISO 5725 can lead to serious underestimation (uniform-level design) or overestimation (split-level design) of the repeatability standard deviation. By using the design proposed in NEN 6303, these biases can be avoided. Hence, it is recommended that interlaboratory studies be organized according to the design of NEN 6303.


1995 ◽  
Vol 78 (2) ◽  
pp. 301-306 ◽  
Author(s):  
Kristi A Boehm ◽  
P Frank Ross

Abstract Twelve collaborating laboratories analyzed 5 blind duplicate samples of human urine for total nitrogen using a pyrochemiluminescence method. The nitrogen content ranged from low (650 mg/L) to high levels (8800 mg/L) in urine samples of people under moderate to severe stress. In addition to test samples, collaborators also received a certified standard (sodium nitrite in water) as an external control. The pyrochemiluminescence assay was performed on urine samples diluted in water within a range of 1:50 to 1:100. The method detects total nitrogen by reaction of the product of high temperature oxidative pyrolysis and ozone. Repeatability standard deviation values (RDSr) ranged from 1.49 to 3.91% and reproducibility standard deviation values (RSDR) ranged from 3.66 to 9.57%. The average recovery of total nitrogen was 99.9%. The pyrochemiluminescence method for determination of total nitrogen in urine was adopted first action by AOAC INTERNATIONAL.


1970 ◽  
Vol 53 (1) ◽  
pp. 84-86
Author(s):  
Henry M. Davis

Abstract A method for the determination of amyl p-dimethylaminobenzoate in suntan preparations was submitted for collaborative study. The sunscreen is isolated by partition chromatography and determined by UV spectrophotometry. The data of two collaborators were discarded. Results for the six collaborators show recoveries of 94-101% for samples containing from 10.2 to 23.1 mg sunscreen. The standard deviation varied from 0.18 to 0.72 and the coefficient of variation from 1.84 to 3.6%. It is recommended that the method be adopted as official first action.


1981 ◽  
Vol 64 (6) ◽  
pp. 1435-1438
Author(s):  
Joan C May ◽  
Jenny T C Sih ◽  
◽  
Allergy Laboratories ◽  
J Best ◽  
...  

Abstract Protein nitrogen unit (PNU) determination is one of the methods used to test and label the concentration of allergenic extracts. This recently standardized method is applicable to all allergenic extracts. One PNU/mL is equivalent to 1 × 10−5 mg nitrogen determined to be in the material precipitated from 1 m l allergenic extract by phosphotungstic acid (PTA), a protein precipitant. The nitrogen is quantitated by the Kjeldahl method or another analytical method of equivalent accuracy and precision. A collaborative study of the optimized PNU precipitation method in which 6 samples were analyzed in duplicate by 6 laboratories using the Kjeldahl method for the determination of nitrogen yielded a mean of 0.1358 mg N/ml, a repeatability standard deviation and coefficient of variation of 0.0071 mg N/mL and 5.23%, respectively, and a reproducibility standard deviation and coefficient of variation of 0.0188 mg N/mL and 13.84%, respectively. The method has been adopted official first action.


1982 ◽  
Vol 65 (5) ◽  
pp. 1178-1185 ◽  
Author(s):  
John B Gallagher ◽  
Paul W Love ◽  
Linda L Knotts ◽  
◽  
M Allred ◽  
...  

Abstract A liquid chromatographic technique for the determination of bacitracin in finished feeds and premix feeds consists of an isocratic reverse phase, ion-suppressed technique. The chromatography can be completed in less than 25 min. In a collaborative study involving 9 laboratories and 3 samples of bacitracin methylene disalicylic acid and 3 samples of bacitracin zinc premixes covering the range of 10-50 g/lb, the repeatability standard deviation was 0.55, and the reproducibility standard deviation was 1.35. The average recovery of the bacitracin was 102.0%. The method has been adopted official first action for bacitracin in premix feeds.


2006 ◽  
Vol 89 (4) ◽  
pp. 929-936 ◽  
Author(s):  
James L Mertz ◽  
Dora Y Lau ◽  
David M Borth ◽  
E D Ausan ◽  
O Bennett ◽  
...  

Abstract Fourteen collaborating laboratories assayed maleic hydrazide (MH), 6-hydroxypyridazin-3(2H)-one, in technical and formulated products by reversed-phase liquid chromatography (LC) with sulfanilic acid as an internal standard. The active MH in the samples (6 lots) ranged from 16% (expressed as the potassium salt) to 98% (MH in the technical). A small amount of 1 M KOH was added to the technical MH and analytical standards to create the potassium salt of the analyte which is soluble in water. Test samples and standards were extracted with water containing the internal standard before analysis by LC on a C8 column with an ion-pairing eluting solution and UV detection at 254 nm. The concentration of MH was calculated by comparing the peak area response ratios of the analyte and the internal standard with those in the analytical standard solution. Eleven laboratories weighed each test sample twice with single analysis. Three laboratories weighed each sample once and made duplicate injections on the LC system. The data were analyzed using the 11 laboratories' results. A second data analysis was done including all laboratory results using a Youden pair approach, selecting one of 2 duplicate assay values randomly for each laboratory and sample. In the first data analysis, the repeatability standard deviation ranged from 0.07 to 1.39%; reproducibility standard deviation ranged from 0.22 to 1.39%. In the second data analysis (using all laboratory data), repeatability standard deviation ranged from 0.09 to 0.86%; reproducibility standard deviation ranged from 0.22 to 1.31%.


1982 ◽  
Vol 65 (1) ◽  
pp. 115-118
Author(s):  
James J Karr ◽  
◽  
J B Audino ◽  
A A Carlstrom ◽  
L T Chenery ◽  
...  

Abstract The determination of diazinon insecticide in Knox Out 2FM formulation was studied collaboratively by 18 laboratories. Knox Out 2FM is a flowable microencapsulated insecticide formulation containing 23 wt% active ingredient. Analytical samples are first treated by grinding in a tissue grinder and then extracted in situ with acetonitrile. This preparative step breaks the capsules and allows the active ingredient to dissolve in the solvent. Single determinations on each of 2 closely matched samples were made by flame ionization gas-liquid chromatography. The standard deviation by analysts was 0.18 wt% and the coefficient of variation was 0.76%. The combined laboratory and analyst variation gave a standard deviation of 0.59 wt% and a coefficient of variation of 2.49%. The method has been adopted official first action.


1994 ◽  
Vol 77 (4) ◽  
pp. 829-839 ◽  
Author(s):  
Donald F Tate

Abstract Fourteen laboratories participated in a collaborative study to compare abilities of AOAC modified copper catalyst Kjeldahl method, 978.02, and the generic combustion method, 990.03, to analyze the nitrogen content of fertilizer materials. Combustion analyses are more time efficient, more accurate, and less hazardous than Kjeldahl analyses. There were 3 different types of instrumentation involved in the collaborative study: (1) Leco FP-428 Nitrogen Determinator; (2) Perkin-Elmer 2410 Series II Nitrogen Analyzer; (3) Carlo-Erba 1500 Series II Nitrogen Analyzer. Thirty samples of fertilizer containing 1–67% N included 2 ACS grade standard materials: ammonium nitrate, theory 35.00% N; and dicyandiamide, theory 66.64% N. A diammonium phosphate and urea mixture (3 + 1 ; 1.0 mm grind) and 2 ACS grade standard materials of ammonium nitrate and ammonium sulfate were supplied for repetitive combustion analyses. Overall method performance of the combustion method was at least as good as the modified Kjeldahl method. Repeatability standard deviation (Sr) values for the combustion method ranged from 0.09 to 0.34 vs the modified Kjeldahl method range of 0.06–0.49; reproducibility standard deviation (SR) values for the combustion method ranged from 0.13 to 1.07 vs the range of 0.09–3.57 for the modified Kjeldahl method. The grand mean was 20.78% for the combustion method, and 20.79% for the modified Kjeldahl method using various fertilizers. The average ranges of sr and SR for the methods were, respectively, 0.17 and 0.29 for the combustion method, and 0.19 and 0.54 for the modified Kjeldahl method. The method was adopted first action by AOAC INTERNATIONAL.


Sign in / Sign up

Export Citation Format

Share Document