scholarly journals Liquid Chromatographic Determination of Maleic Hydrazide in Technical and Formulated Products: Collaborative Study

2006 ◽  
Vol 89 (4) ◽  
pp. 929-936 ◽  
Author(s):  
James L Mertz ◽  
Dora Y Lau ◽  
David M Borth ◽  
E D Ausan ◽  
O Bennett ◽  
...  

Abstract Fourteen collaborating laboratories assayed maleic hydrazide (MH), 6-hydroxypyridazin-3(2H)-one, in technical and formulated products by reversed-phase liquid chromatography (LC) with sulfanilic acid as an internal standard. The active MH in the samples (6 lots) ranged from 16% (expressed as the potassium salt) to 98% (MH in the technical). A small amount of 1 M KOH was added to the technical MH and analytical standards to create the potassium salt of the analyte which is soluble in water. Test samples and standards were extracted with water containing the internal standard before analysis by LC on a C8 column with an ion-pairing eluting solution and UV detection at 254 nm. The concentration of MH was calculated by comparing the peak area response ratios of the analyte and the internal standard with those in the analytical standard solution. Eleven laboratories weighed each test sample twice with single analysis. Three laboratories weighed each sample once and made duplicate injections on the LC system. The data were analyzed using the 11 laboratories' results. A second data analysis was done including all laboratory results using a Youden pair approach, selecting one of 2 duplicate assay values randomly for each laboratory and sample. In the first data analysis, the repeatability standard deviation ranged from 0.07 to 1.39%; reproducibility standard deviation ranged from 0.22 to 1.39%. In the second data analysis (using all laboratory data), repeatability standard deviation ranged from 0.09 to 0.86%; reproducibility standard deviation ranged from 0.22 to 1.31%.

1980 ◽  
Vol 63 (2) ◽  
pp. 178-179
Author(s):  
William P Clinton ◽  
Paul H Manni ◽  
John M Ferry

Abstract A collaborative study was undertaken to define an acceptable routine working method for determination of mass loss in instant coffee. Fourteen laboratories of 24 invited to participate submitted results. The repeatability standard deviation and coefficient of variation were 0.026 and 0.7%, respectively. The reproducibility standard deviation and coefficient of variation were 0.153 and 3.8%, respectively. The method has been adopted as official first action.


1981 ◽  
Vol 64 (4) ◽  
pp. 1021-1026
Author(s):  
Robert W Dabeka ◽  
Arthur D Mckenzie ◽  
◽  
R A Baetz ◽  
D W Bingham ◽  
...  

Abstract Twelve laboratories analyzed (1 replicate) 12 samples of infant foods – milk, pears, and peas – containing 0.2-5 ppm F. There was one laboratory outlier. Mean coefficients of variation were 7.06% for intralaboratory determination of 3 sets of blind duplicates and 21.6% for interlaboratory determination of 12 samples. Variance analysis for all samples yielded a reproducibility standard deviation of 0.41 ppm; for 3 sets of blind duplicates, repeatability standard deviation was 0.26 ppm and reproducibility standard deviation was 0.32 ppm.


1997 ◽  
Vol 80 (3) ◽  
pp. 469-480 ◽  
Author(s):  
Ivan S Palmer ◽  
Nancy Thiex ◽  
R Allen ◽  
E Alley ◽  
N Anderson ◽  
...  

Abstract A total of 17 laboratories participated in a collaborative study for the determination of selenium in feeds and premixes using either a fluorometric or a continuous hydride generation atomic absorption (HGAA) method. Each collaborator analyzed 16 blind duplicate samples of feed and premixes from various feed manufacturers. The amount of Se in these materials ranged from 0.2 to 5500 μg/g. Six laboratories used only the fluorometric procedure, 8 laboratories used only the hydride generation atomic absorption procedure, and 3 laboratories used both procedures. One laboratory in the fluorometric study and 3 laboratories in the HGAA study were initially excluded because of invalid data. Poor agreement between the blind duplicates indicated probable sample interchange and/or dilution error. The data from 8 laboratories were submitted to statistical analysis, including data from 2 laboratories participating in both studies. The repeatability standard deviation (RSDr) for samples analyzed by the fluorometric procedure ranged from 5.9 to 33%, and the reproducibility standard deviation (RSDR) ranged from 12 to 33%. RSDf for samples analyzed by HGAA ranged from 2.8 to 18%, and RSDR ranged from 4.0 to 36%. Both fluorometric and continuous hydride generation atomic absorption methods for the determination of Se in feeds and premixes have been adopted first action by AOAC INTERNATIONAL.


1997 ◽  
Vol 80 (5) ◽  
pp. 1029-1039 ◽  
Author(s):  
Hubert Hoebregs ◽  
P Balis ◽  
J De Vries ◽  
J v Eekelen ◽  
P Farnell ◽  
...  

Abstract Nine collaborating laboratories assayed 6 blind duplicate pairs of food samples containing the fructans inulin or oligofructose. The 6 sample pairs ranged from low (4%) to high levels (40%). Following the proposed method, the samples were treated with amyloglucosidase and inulinase enzymes and the released sugars were determined byion exchange chromatography. Repeatability standard deviation ranged from 2.9 to 5.8%; reproducibility standard deviation ranged from 4.7 to 11.1%. The ion-exchange chromatographic method for determinationof fructans in food and food products has been adopted first action by AOAC INTERNATIONAL (997.08)


1982 ◽  
Vol 65 (5) ◽  
pp. 1168-1177
Author(s):  
John B Gallagher ◽  
Linda L Knotts ◽  
◽  
D Brennecke ◽  
H H Bryant ◽  
...  

Abstract A cylinder plate assay procedure was studied by 10 laboratories. For premix feeds, 3 samples of bacitracin methylene disalicylic acid and 3 samples of bacitracin zinc premixes covering the range of 10 to 50 g/lb were used. The repeatability standard deviation was 2.11, and the reproducibility standard deviation was 2.13. The average recovery of bacitracin was 101.5%. The method has been adopted official first action. For finished feeds, 6 samples of bacitracin methylene disalicylic acid and 6 samples of bacitracin zinc covering the range of 10 to 800 g/ton were used in the study. The procedure included a sample cleanup step using disposable reverse phase columns. This step appears to be the cause of the poor results reported by most collaborators. Continued study is needed to develop an acceptable method for finished feeds.


2000 ◽  
Vol 83 (2) ◽  
pp. 260-268
Author(s):  
Robert L Smallidge ◽  
Kendrick Albert ◽  
Nancy L Britton ◽  
Harold M Campbell ◽  
Cheon-Seck Jeon ◽  
...  

Abstract A liquid chromatographic (LC) method for the analysis of sulfamethazine (SMT) in complete swine and cattle feed was collaboratively studied. The method uses post-column derivatization with dimethylaminobenzaldehyde and detection at 450 nm. To 5 g finely ground feed, extractant (0.2N HCl + 1.5% diethylamine in 25% methanol), and internal standard solutions are added, and the SMT is extracted by shaking for 1 h. Clarified extract (high-level sample extract diluted to a target concentration of ca 5.5 μg/mL) is chromatographed on a C18 reversed-phase LC column with acetonitrile–2% acetic acid (17 + 83) mobile phase. Sulfamerazine is used as an internal, or surrogate standard to correct for variable recovery of sulfamethazine from a variety of feed matrixes. Six Youden matched-pair samples were sent to 10 collaborators in Korea, Canada, and the United States. Label claims on the commercial feeds ranged from 0.0077 to 0.22% SMT. The SMT mean recovery as determined from the 5 samples with known analyte content was 99.8%. The within-laboratory relative standard deviation (repeatability) ranged from 0.28 to 4.72%. Among-laboratory (including within-laboratory) relative standard deviation (reproducibility) ranged from 1.26 to 4.87%. The authors recommend the method for AOAC INTERNATIONAL Official First Action status.


1994 ◽  
Vol 77 (6) ◽  
pp. 1359-1361 ◽  
Author(s):  
Andre Fontaine ◽  
Karel Haustraete

Abstract Diclazuril, Janssen Research Compound R 64433 (Clinacox), is analyzed by liquid chromatography (LC). Compound R 062646, with a structure analogous to that of diclazuril, is used as internal standard. The drug is extracted from feed with acidified methanol. Diclazuril is then isolated by solid-phase extraction (SPE) with a cartridge containing a C18 phase. The eluate is evaporated, and the residue is redissolved in dimethylformamide. An aliquot is injected onto a reversed-phase ODS LC column, and the drug quantitated at 280 nm with a UV detector. Peak areas are obtained at the retention times corresponding to the internal standard and diclazuril. The quantity of active ingredient is determined by comparing the ratio of the peak height of diclazuril to that of internal standard in the sample with the same ratio in a single calibration solution. SPE is not necessary for the analysis of premixes. Eleven laboratories participated in the collaborative study. Laboratories were provided with 2 samples of premixes and 3 samples of feed for poultry. Feed sample K1 was sent to only 6 laboratories. The reproducibility relative standard deviations (RSDRS) were 7.38 and 7.53% for the 2 premixes and 9.67,13.65, and 18.61% for the 3 samples of supplemented feed.


1973 ◽  
Vol 56 (5) ◽  
pp. 1164-1172
Author(s):  
Milan Ihnat ◽  
Robert J Westerby ◽  
Israel Hoffman

Abstract The distillation-spectrophotometric method of Hoffman for determining maleic hydrazide has been modified to include a double distillation and was applied to the determination of 1–30 ppm maleic hydrazide residues in tobacco and vegetables. Recoveries of 1–23 μg added maleic hydrazide were independent of weight of maleic hydrazide, but did depend on sample and sample weight. The following recoveries were obtained from 0.5 g sample: pipe tobacco, 84%; commercially dehydrated potato, 83%; cigar tobacco, 81%; dried potato, 76%; fluecured tobacco, 73%; dried carrot, 71%. In the absence of sample, the recovery was 82%. When appropriate standard curves were used, maleic hydrazide levels determined in tobacco samples were essentially independent of sample weight in the range 0.1–3 g. The mean relative standard deviation for a variety of field-treated and fortified tobacco samples containing 1–28 ppm maleic hydrazide was 3%. The precision and sensitivity of this procedure seem to be substantial improvements over official method 29.111–29.117. It is recommended that the present method be subjected to a collaborative study.


1977 ◽  
Vol 60 (5) ◽  
pp. 1059-1063
Author(s):  
John T Goras

Abstract A colorimetric method for determining carbadox in complete swine feeds and feed supplements was collaboratively studied. Carbadox is separated from feed with CHCl3-methanol (3+1) and then separated from interfering materials by a series of solvent-solvent extractions. The drug is isolated as a dry residue, reconstituted, and reacted with stannous chloride to form a colored complex that is measured at 520 nm. The method of standard additions is used to compensate for a feed or feed supplement matrix effect. Twenty-seven laboratories assayed feeds containing 0.0013, 0.0053, and 0.0242% carbadox. The repeatability standard deviation (σ0) and reproducibility standard deviation (σx) were σ0 = 0.00014%, σx = 0.00035% (29% of grand mean) for 0.0013% carbadox in feed; σ0 = 0.00025%, σx = 0.00037% (6.7% of grand mean) for 0.0053% carbadox in feed; and σ0 = 0.0019%, σx = 0.0024% (9.6% of grand mean) for 0.0242% carbadox in feed. The between-laboratory variance ratio was not significant for feeds containing 0.0013 and 0.0053% carbadox, but was significant for feeds containing 0.0242% carbadox. The mean recovery values for feeds containing 0.0013, 0.0053, and 0.0242% carbadox were 92, 104, and 103%, respectively. The method was adopted as official first action for feeds having a guaranteed potency of 0.0055% carbadox or higher.


1989 ◽  
Vol 72 (1) ◽  
pp. 34-37 ◽  
Author(s):  
J Zaalberg

Abstract To determine the precision of standardized analytical methods, interlaboratory experiments are carried out in which several laboratories analyze identical samples from well homogenized batches of material. From the test results, estimates of the standard deviations under repeatability as well as under reproducibility conditions are calculated. In the present work, the experimental designs recommended in the International Standard ISO 5725 have been compared with a design proposed in the draft Netherlands Standard NEN 6303. This has been done by comparing their mathematical models as well as by applying them to the results of a recent collaborative study on the determination of heavy metals in edible oils and fats. The reproducibility standard deviation is estimated equally well with both Standards, but it appeared that the designs given in ISO 5725 can lead to serious underestimation (uniform-level design) or overestimation (split-level design) of the repeatability standard deviation. By using the design proposed in NEN 6303, these biases can be avoided. Hence, it is recommended that interlaboratory studies be organized according to the design of NEN 6303.


Sign in / Sign up

Export Citation Format

Share Document