scholarly journals Supercritical Fluid Extraction of Halogenated Monoterpenes from the Red Alga Plocamium cartilagineum

2001 ◽  
Vol 84 (5) ◽  
pp. 1313-1331 ◽  
Author(s):  
Donqhui Gao ◽  
Roy Okuda ◽  
Viorica Lopez-Avila

Abstract Supercritical fluid extraction (SFE) of the marine red alga Plocamium cartilagineum, which is known to contain complex mixtures of halogenated monoterpenes, was investigated. P. cartilagineum samples were extracted by SFE with carbon dioxide and modified carbon dioxide containing up to 10% methanol at different pressure and temperature conditions to establish the optimum conditions for extraction. These conditions were then used in the extraction of halogenated monoterpenes from 2 different samples of P. cartilagineum: one from Davenport, CA, and the other from Casa Beach (San Diego, CA). Several halogenated monoterpenes isolated by conventional solvent extraction with methanol and purified by column chromatography were used as the reference compounds for the determination of the extraction efficiency in the SFE experients. Plocamium cartilagineum belongs to the red alga family—Plocamiaceae, and has been found to contain a large number of halogenated monoterpenes, whose structures typically contain 1–6 bromine and/or chlorine atoms. P. cartilagineum grows along the Pacific coast from Washington to Chile, the British Isles, Australia, and Spain. Interestingly, P. cartilagineum collected from different geographical areas in the world are all reported to produce halogenated monoterpenes, but of different structural types and halogen substitution patterns. Most of these halogenated monoterpenes have been found to exhibit varied biological activities, including antifungal, antimicrobial, and molluscicidal activity.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1290
Author(s):  
Noha Khalil ◽  
Mokhtar Bishr ◽  
Mohamed El-Degwy ◽  
Mohamed Abdelhady ◽  
Mohamed Amin ◽  
...  

Background: Khella (Ammi visnaga Lam.) fruits (Apiaceae) are rich in furanochromones, mainly khellin and visnagin, and are thus incorporated in several pharmaceutical products used mainly for treatment of renal stones. Methods: The objective of this study was to compare the yield of khellin and visnagin obtained using different conventional solvents and supercritical fluid extraction (SCFE) with carbon dioxide (containing 5% methanol as co-solvent). Water, acetone and ethanol (30% and 95%) were selected as conventional solvents. Results: Highest extract yield was obtained from 30% ethanol (15.44%), while SCFE gave the lowest yield (4.50%). However, the percentage of furanochromones were highest in SCFE (30.1%), and lowest in boiling water extract (5.95%). HPLC analysis of conventional solvent extracts showed other coumarins that did not appear in supercritical fluid extraction chromatogram due to non-selectivity of solvent extraction. Ammi visnaga extracts as well as standard khellin and visnagin were tested for their cytotoxic activity using sulforhodamine B assay on breast cancer (MCF-7) and hepatocellular carcinoma (Hep G2) cell lines. Results revealed a strong cytotoxic activity (IC50 < 20 µg/mL) for the SCFE and standard compounds (khellin and visnagin) (IC50 ranging between 12.54 ± 0.57 and 17.53 ± 1.03 µg/mL). However, ethanol and acetone extracts had moderate cytotoxic activity (IC50 20–90 µg/mL) and aqueous extract had a weak activity (IC50 > 90 µg/mL). Conclusions: Thus, supercritical fluid extraction is an efficient, relatively safe, and cheap technique that yielded a more selective purified extract with better cytotoxic activity.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
V. S. Carrara ◽  
L. C. Filho ◽  
V. A. S. Garcia ◽  
V. S. Faiões ◽  
E. F. Cunha-Júnior ◽  
...  

Supercritical fluid extraction was used to extract the alkaloid N-[7-(3′,4′-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl]pyrrolidine from leaves of Piper amalago L. A three-level orthogonal array design matrix, OAD OA9(34), was used for optimization of the parameters of supercritical extraction of the alkaloid, employing supercritical carbon dioxide: extraction time (20, 40, and 60 min), temperature (40, 50, and 60°C), pressure (150, 200, and 250 bar), and the use of cosolvents (ethanol, methanol, and propyleneglycol). All parameters had significant effect on the alkaloid yield. The alkaloid yield after 60 min of extraction without cosolvents at 9 different conditions (32) in terms of temperature (40, 50, and 60°C) and pressure (150, 200, and 250 bar) was also evaluated. The optimal yield (≈3.8 mg g−1) was obtained with supercritical CO2 + methanol (5% v : v) at 40°C and 200 bar for 60 min of extraction.


2014 ◽  
Vol 16 (2) ◽  
pp. 76-81 ◽  
Author(s):  
Anny Sulaswatty ◽  
Egi Agustian

Potensi Indonesia akan minyak akar wangi yang berorientasi ekspor dalam industri kosmetik, parfum, sabun, keperluan terapi, antiseptik, massage oil, farmasi dan pestisida memberikan peluang yang besar untuk memenuhi kebutuhan dunia. Guna nilai tambah minyak akar wangi dengan meningkatkan kadar vetiverol sebagai komponen utama, diaplikasikan teknologi ekstraksi fluida karbondioksida superkritik yang merupakan perpaduan ekstraksi, fraksinasi dan deodorisasi dengan didukung keunggulan karbondioksida sebagai pelarut yang inert, ramah lingkungan, mudah dipisahkan, dan berdaya larut tinggi.  Minyak akar wangi Garut (Java vetiver oil) sebagai bahan baku, mempunyai karakteristik  kadar vetiverol  39.03 %; Bobot jenis 0.9977; indeks bias 1.5247;  putaran optik +38.1; kelarutan dalam alkohol 95%  yaitu 1:1 jernih; bilangan asam 28.1; bilangan ester 24.6; bilangan ester setelah asetilasi 115.5; serta tidak mengandung minyak lemak dan  minyak keruing. Pemilihan kondisi proses guna menghasilkan kandungan vetiverol optimal dilakukan dengan memvariasikan laju alir gas CO2, tekanan dan suhu sebagai parameter penting dalam keberhasilan proses ekstraksi minyak akar wangi dengan fluida CO2 superkritik. Pemilihan laju alir konstan dan lebih stabil  diperoleh pada 5.5 liter/menit, sedangkan untuk variasi tekanan ekstraktor (1500, 1750, 2000 psi) dan suhu ekstraktor (40-50oC);  tekanan dan suhu separator  500 psi dan 25oC serta waktu proses selama lima jam dengan pengambilan ekstrak setiap jam. Tekanan dan suhu proses yang optimal diperoleh pada 1750 psi dan suhu 40oC  dengan  rafinat minyak akar wangi berkadar vetiverol  51.82 %,  bilangan ester 7.2 dan bilangan ester setelah asetilasi  172.4. Tingginya tekanan dan rendahnya suhu berpengaruh terhadap perolehan ekstrak; penurunan rafinat; peningkatan nilai  bobot jenis ekstrak dan rafinat; indeks bias ekstrak dan rafinat; putaran optik ekstrak dan rafinat; peningkatan viskositas ekstrak dan rafinat; peningkatan bilangan ester ekstrak, bilangan ester setelah asetilasi ekstrak, serta kandungan vetiverol.Kata Kunci: Minyak Akar Wangi, Vetiverol, Ekstraksi Fluida Superkritik Potential Indonesian vetiver oil export oriented industry of cosmetics, perfumes, soaps, therapeutic purposes, antiseptic, massage oil, pharmaceutical and pesticide presents a great opportunity to meet the needs of the world. In order to add value vetiver oil by increasing the levels vetiverol as the main component, was applied to carbon dioxide supercritical fluid extraction technology which is a combination of extraction, fractionation and deodorization with excellence supported carbon dioxide as an inert solvent, eco-friendly, easily separated, and the high solubility. Garut vetiver oil (Java vetiver oil) as raw material, has the characteristics vetiverol levels 39.03%, specific gravity of 0.9977; refractive index of 1.5247; optical rotation +38.1; solubility in alcohol 95% is a clear 1:1; acid number 28.1; ester number 24.6; ester number after acetylation 115.5; as well as fats and oils contain no oil keruing. The selection process conditions in order to produce optimal vetiverol content performed by varying the flow rate of CO2 gas, pressure and temperature as an important parameter in the success of vetiver oil extraction with supercritical CO2 fluid. The selection of a constant flow rate and more stable obtained at 5.5 liters / min, whereas for pressure variation extractor (1500-2000 psi) and extractor temperature (40-50oC); separator pressure and temperature of 500 psi and 25 °C as well as the processing time for five hours by taking extracts every hour. Pressure and temperature optimum process obtained at 1750 psi and a temperature of 40oC with rafinat vetiverol vetiver oil yield of 51.82%, ester number 7.2, and ester number after acetylation 172.4. The high pressure and low temperature affect the acquisition of the extract; rafinat decline; increase in the value of specific gravity and rafinat extracts; refractive index and rafinat extract; optical rotation and rafinat extract; increase in the viscosity of the extract and rafinat; increase in numbers ester extract, ester number after acetylation extracts, as well as the content vetiverol. Key word: Vetiver Oil, Vetiverol, Supercritical Fluid Extraction.


2019 ◽  
Vol 154 ◽  
pp. 104599 ◽  
Author(s):  
Heidi L. Cossey ◽  
Selma E. Guigard ◽  
Eleisha Underwood ◽  
Warren H. Stiver ◽  
Jennifer McMillan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document