scholarly journals Liquid Chromatographic Determination of Flumetsulam in Soybeans

2005 ◽  
Vol 88 (5) ◽  
pp. 1463-1468 ◽  
Author(s):  
Michael Moawad ◽  
Cheang S Khoo

Abstract A liquid chromatography (LC) method with UV detection is reported for the determination of the sulfonamide herbicide flumetsulam in soybeans. The ground soybean sample was partitioned between methanol and hexane. The hexane removed the lipids, and the methanol layer containing the analyte was further partitioned between dichloromethane and aqueous phosphate buffer at pH 7.0. The aqueous layer, containing the analyte, was acidified to pH 2.2 and partitioned with fresh dichloromethane. The dichloromethane layer containing the analyte was evaporated, and the residue was dissolved in the LC mobile phase for analysis. A polar embedded C18 column was used with a mobile phase of pH 2.2 aqueous phosphate buffer–acetonitrile (68 + 32), run isocratically with detection at 225 nm. The average recovery was 82% with a relative standard deviation (RSD) of 10%. A coefficient of determination of R2 = 0.9992 was achieved for the analyte calibration curve, from 0.005 to 1 μg/mL. The limit of detection, determined from 3 times the standard deviation of 7 replicate extractions of the lowest fortification level (0.01 μg/g, was 0.005 μg/g with an RSD of 22%. LC/electrospray ionization/mass spectrometry in the positive-ion mode was used for identity confirmation of flumetsulam in the fortified soybean extract. The ions at m/z 326, 348, and 129 were observed.

2010 ◽  
Vol 3 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Sophi Damayanti ◽  
Slamet Ibrahim ◽  
Kurnia Firman ◽  
Daryono H Tjahjono

Analytical method for the determination of paracetamol and ibuprofene mixtures has been developed by High Performance Liquid Chromatography using C-18 column and acetinitrile - phosphate buffer pH = 4.5 (75:25) containing 0.075% sodium hexanesulfunate as a mobile phase. The detector was set at 215 nm. Using such conditions, retention time for paracetamol and ibuprofen was 4.89 and 7.11 min, respectively. The recovery for paracetamol and ibuprofen was found to be 101.07± 0.73% and 102.02 ± 1.58%, respectively. The detector limits of the method was 1.30 and 1.60 μg/mL with the relative standard deviation (RSD) 0.74 and 1.52% for paracetamol and ibuprofen, respectively.   Keywords: paracetamol, ibuprofen, multi-component, validation, HPLC.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Mohsen Keyvanfard ◽  
Khadijeh Alizad ◽  
Razieh Shakeri

A new kinetic spectrophotometric method is described for the determination of ultratrace amounts of sodium cromoglycate (SCG). The method based on catalytic action of SCG on the oxidation of amaranth with periodate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of the amaranth at 518 nm, for the first 4 min from initiation of the reaction. Calibration curve was linear in the range of 4.0−36.0 ng mL−1SCG. The limit of detection is 2.7 ng mL−1SCG. The relative standard deviation (RSD) for ten replicate analyses of 12, 20, and 28 ng mL−1SCG was 0.40%, 0.32%, and 0.53%, respectively. The proposed method was used for the determination of SCG in biological samples.


2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


Author(s):  
Muhammad Fawad Rasool ◽  
Umbreen Fatima Qureshi ◽  
Nazar Muhammad Ranjha ◽  
Imran Imran ◽  
Mouqadus Un Nisa ◽  
...  

AbstractTh accurate rapid, simple and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of captopril (CAP). Chromatographic separation was accomplished using prepacked ODSI C18 column (250 mm × 4.6 mm with 5 μm particle size) in isocratic mode, with mobile phase consisting of water: acetonitrile (60:40 v/v), pH adjusted to 2.5 by using 85% orthophosphoric acid at a flow rate of 1 mL/min and UV detection was performed at 203 nm. RP-HPLC method used for the analysis of CAP in mobile phase and rabbit plasma was established and validated as per ICH-guidelines. It was carried out on a well-defined chromatographic peak of CAP was established with a retention time of 4.9 min and tailing factor of 1.871. The liquid–liquid extraction method was used for extraction of CAP from the plasma. Excellent linearity (R2 = 0.999) was shown over range 3.125–100 µg/mL with mean percentage recoveries ranges from 97 to 100.6%. Parameters of precision and accuracy of the developed method meet the established criteria. Intra and inter-day precision (% relative standard deviation) study was also performed which was less than 2% which indicate good reproducibility of the method. The limit of detection (LOD) and quantification for the CAP in plasma were 3.10 and 9.13 ng/mL respectively. The method was suitably validated and successfully applied to the determination of CAP in rabbit plasma samples.


2021 ◽  
Vol 10 (1) ◽  
pp. 20-28
Author(s):  
Ivana Savić-Gajić ◽  
Ivan Savić ◽  
Predrag Sibinović ◽  
Valentina Marinković

In this study, the modified stability-indicating RP-HPLC method was validated for quantitative analysis of amlodipine besylate in the presence of its impurity D (3-ethyl 5-methyl 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-6-methylpyridine-3,5-dicarboxylate). The method was applied for the determination of an analyte in the tablets and irradiated samples packed in the primary packaging (Alu/PVC/PVDC blister packaging). The efficient chromatographic separation was achieved using a ZORBAX Eclipse XDB-C18 column (4.6×250 mm, 5 mm) with isocratic elution of mobile phase which consisted of acetonitrile:methanol:triethylamine solution (15:35:50, v/v/v) (pH 3.0). The flow rate of the mobile phase was 1 mL min-1, while the detection of amlodipine besylate was carried out at 273 nm. Amlodipine besylate and its impurity D were identified at the retention times of 16.529 min and 2.575 min, respectively. The linearity of the method with the coefficient of determination of 0.999 was confirmed in the concentration range of 10 - 75 µg mL-1 for amlodipine besylate. The limit of detection was 0.2 µg mL-1, while the limit of quantification was 0.66 µg mL-1. After UV and Vis radiation of the tablets packed in the primary packaging, the content of amlodipine besylate was reduced by 22.38% and 19.89%, respectively. The presence of new degradation products was not detected under the given chromatographic conditions. The photodegradation of amlodipine besylate followed pseudo-first-order kinetics. Based on the half-life of amlodipine besylate (38.4 days for UV radiation and 43.3 days for Vis radiation), it was concluded that amlodipine besylate in the tablets has satisfactory photostability after its packing in the Alu/PVC/PVDC blister packaging.


2002 ◽  
Vol 85 (4) ◽  
pp. 889-900 ◽  
Author(s):  
Eric Verdon ◽  
Pierric Couëdor ◽  
Pierre Maris ◽  
Michel Laurentie ◽  
P Batjoens ◽  
...  

Abstract A collaborative study involving 14 laboratories was conducted to determine residues of ampicillin in porcine muscle tissue by using a liquid chromatographic method developed for multipenicillin analysis that can quantitate 8 penicillin compounds (benzylpenicillin, phenoxymethylpenicillin, ampicillin, amoxicillin, nafcillin, oxacillin, cloxacillin, and dicloxacillin) at trace levels in muscle tissue. This method involves extraction of the penicillins with phosphate buffer, pH 9, followed cleanup and concentration on a C18 solid-phase extraction column and reaction with benzoic anhydride at 50°C and with 1,2,4-triazole and mercury(II) chloride solution, pH 9.0, at 65°C. The derivatized compounds are eluted isocratically on a C8 column with a mobile phase of acetonitrile and phosphate buffer (pH 6; 0.1M) containing sodium thiosulfate and the ion-pair reagent tetrabutylammonium hydrogen sulfate. The penicillins are detected by UV absorption at 325 nm. The limit of detection and the limit of determination (quantitation) of the method were calculated to be approximately 3–5 and 25 μg/kg, respectively, in accordance with the criteria of European Union (EU) Decision No. 93/256/EEC. In this first interlaboratory study, collaborators were instructed to monitor 4 different penicillin compounds (benzylpenicillin, phenoxymethylpenicillin, ampicillin, and amoxicillin) by analyzing 8 blind samples of muscle tissue in triplicate. These samples were prepared from 2 materials containing different concentrations of incurred ampicillin (63.5 μg/kg for material No. 1 and 358.1 μg/kg for material No. 2) and 1 blank material. The repeatability relative standard deviation and the reproducibility relative standard deviation were 10.2 and 17.4%, respectively, for material No. 1 and 7.0 and 16.0%, respectively, for material No. 2. These results demonstrate that the method is suitable for the determination of ampicillin residues in muscle tissue at the EU maximum residue limit (50 μg/kg) and above. However, the identification of positives by this procedure may need additional confirmation by techniques with greater specificity, such as liquid chromatography combined with mass spectrometry, or tandem mass spectrometry. Investigations regarding the basis of interlaboratory testing studies will further demonstrate the suitability of multiresidue methodology for detecting and quantitating other compounds in the family of penicillin antibiotics.


2006 ◽  
Vol 89 (1) ◽  
pp. 139-143 ◽  
Author(s):  
Maria Helena Iha ◽  
Myrna Sabino

Abstract A method was developed and validated in-house for the determination of patulin (PAT), a toxic mold metabolite, in apple juice. The sample was extracted with ethyl acetatehexane and analyzed by liquid chromatography equipped with a C18 column and diode array detector. The mobile phase used for the quantification was waterethanol, at a flow rate of 0.5 mL/min. The method showed a mean recovery of 84.8%, the relative standard deviation obtained in the precision study was <7.7%, the quantification and detection limits were 7 and 3 μg/L, respectively, and the linear range for PAT in apple juice was 2.6650 μg/L. The ruggedness was evaluated by an intralaboratory experiment, in which 5 factors were studied, and only one was found to influence the observed results. The developed method is fast, practical, and simple; the solvents (except hexane) and reagents used were nontoxic. The results of the validation confirmed the efficiency of the method, which is sensitive enough to be used in studies required to quantify PAT in apple juice.


2013 ◽  
Vol 3 (1) ◽  
pp. 208-210
Author(s):  
Nia Kristiningrum ◽  
Ellsy Novita Martyanti

A rapid, reproducible and accurate TLC method was developed for the determination of Cetirizine Dihydrochloride in tablet. The analytes were dissolved with ethanol 70% and chromatographed on silica Gel GF 254 TLC plate using chloroform : methanol : ethyl acetate in the ratio of 2 : 7 : 3 (v/v) as mobile phase. Quantitative analysis was done through densitometric measurement at wavelength 234 nm. Method was found linear over the concentration range of 400 – 1600 ng/spot with the correlation coefficient of 0.996. Specificity showed calculation of purity and identity more than 0.99. The limit of detection (LOD) and the limit of quantification (LOQ) of the method were 75.54 and 226.64 ng/spot. The relative standard deviation of this method was 0.86% whereas the means of the recovery data was 100.54 ± 0.11%. The proposed method has been applied to the determination of Cetirizine Dihydrochloride in commercial tablet formulations and the result were 96.97 ± 0.86 % for brand A and 100.57 ± 1.17 % for brand B. The developed method was successfully used for the assay of Cetirizine Dihydrochloride. This method is simple, sensitive and precise; it can be used for the routine quality control testing of marketed formulations.DOI: http://dx.doi.org/10.3329/icpj.v3i1.17294 International Current Pharmaceutical Journal, December 2013, 3(1): 208-210


2011 ◽  
Vol 2011 ◽  
pp. 1-5
Author(s):  
Ayushi D. ◽  
Arijit Sengupta ◽  
Sangita D. Kumar ◽  
A. G. Kumbhar ◽  
G. Venkateswaran

A simple, rapid and accurate method for the determination of monoethanolamine (MEA) in PHWR steam-water circuits has been developed. MEA is added in the feed water to provide protection against corrosion while hydrazine is added to scavenge dissolved oxygen. The quantitative determination of MEA in presence of hydrazine was accomplished using derivatization ion chromatography with conductometric detection in nonsuppressed mode. A Metrosep cation 1-2 analytical column and a Metrosep cartridge were used for cation separation. A mixture of 4 mM tartaric acid, 20% acetone and 0.05 mM HNO3was used as eluent. Acetone in the mobile phase leads to the formation of different derivatives with MEA and hydrazine. The interferences due Na+and NH4 +were eliminated by adopting a simple pretreatment procedure employing OnGuard-H cartridge. The limit of detection limit of MEA was 0.1 μg mL−1and the relative standard deviation was 2% for the overall method. The recovery of MEA added was in the range 95%–102%. The method was applied to the determination of MEA in steam generator water samples.


2005 ◽  
Vol 88 (4) ◽  
pp. 1160-1166 ◽  
Author(s):  
Marilyn J Schneider ◽  
Luz Vazquez-Moreno ◽  
Maria del Carmen Bermudez-Almada ◽  
Ramon Barraza Guardado ◽  
Magdalena Ortega-Nieblas

Abstract An efficient multiresidue method for analysis of fluoroquinolones in shrimp has been developed in which quantitation by fluorescence and confirmation by Multiple Stage Mass Spectrometry (MSn) is achieved simultaneously. In this method, shrimp tissue is extracted with ammoniacal acetonitrile and the extract is defatted and then evaporated. After dissolution in basic phosphate buffer, fluoroquinolones in the extract are separated by liquid chromatography and quantitated, taking advantage of their intense fluorescence. Eluate from the fluorescence detector enters the MSn, which allows for confirmation by monitoring ratios of 2 prominent product ions in the MS3 or MS2 spectrum. Using this method, 8 fluoroquinolones have been analyzed in shrimp samples fortified at 10, 25, 50, or 100 ppb levels. Recoveries for desethyleneciprofloxacin, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, orbifloxacin, sarafloxacin, and difloxacin ranged from 75 to 92%, with relative standard deviation values of <6%. The limits of quantitation ranged from 0.1 to 1 ng/g. Enrofloxacin and ciprofloxacin were also successfully determined in enrofloxacin-incurred shrimp using this method.


Sign in / Sign up

Export Citation Format

Share Document