scholarly journals Validation of iQ-Check E. coli O157:H7 Real-Time PCR Test Kit for Detection of Escherichia coli O157:H7 in Selected Foods

2009 ◽  
Vol 92 (4) ◽  
pp. 1095-1104 ◽  
Author(s):  
Wendy F Lauer ◽  
Sylvie Tymciu ◽  
Caroline D Sidi ◽  
Pierre Sonigo

Abstract iQ-Check E. coli O157:H7 (Bio-Rad Laboratories, Hercules, CA) is a real-time PCR kit for detection of E. coli O157:H7 from selected foods. Specific fluorescent oligonucleotide probes are used to detect target DNA during the amplification, by hybridizing to the amplicons. These fluorescent probes are linked to a fluorophore which fluoresces only when hybridized to the target sequence. Three foods (ground beef, apple cider, fresh spinach) were selected to compare the performance of iQ-Check E. coli O157:H7 to the U.S. Department of Agriculture-Food Safety and Inspection Service Microbiology Laboratory Guidebook (MLG) reference method for ground beef and the U.S. Food and Drug Administration/Bacteriological Analytical Manual reference method for apple cider and fresh spinach. Three protocols were tested in this study: a shortened 8 h primary enrichment in buffered peptone water (BPW), a 24 h enrichment in BPW, and an enrichment in appropriate reference method enrichment broth. The iQ-Check E. coli O157:H7 method was able to identify more true/confirmed positive samples than the reference method. Inclusivity and exclusivity rates of the method were 100. iQ-Check E. coli O157:H7 performed as expected when minor procedural variations were introduced, validating the ruggedness of the method. There was no significant difference observed in performance over the shelf life of the kit.

2020 ◽  
Vol 103 (1) ◽  
pp. 161-175
Author(s):  
Dane Brooks ◽  
Benjamin Bastin ◽  
Erin Crowley ◽  
James Agin ◽  
Mike Clark ◽  
...  

Abstract Background: The iQ-Check Real-Time PCR kits use PCR technology based on gene amplification and detection by a real-time PCR thermalcycler for the detection of target analytes in select food matrices. The iQ-Check E. coli O157:H7 [Performance Tested MethodSM (PTM) 020801] and STEC VirX and STEC SerO (combined PTM 121203) methods were previously validated for different matrices under different enrichment schemes. Objective: To modify the current iQ-Check E. coli O157:H7 Kit for the detection of Escherichia coli O157:H7 from 25 to 375 g for raw ground beef (17% fat), raw beef trim, and fresh spinach. In addition, a matrix extension was validated for iQ-Check E. coli O157:H7 for raw chicken breast without skin (25 g), raw chicken thigh with skin (25 g), mechanically separated chicken (25 g), and raw ground pork (25 g). The study also included the modification of the iQ-Check STEC VirX and SerO Kits for the detection of non-O157 Shiga toxin–producing E. coli (STEC) for raw ground beef (375 g), raw beef trim (375 g), and fresh spinach (375 g) from STEC Enrichment Broth to buffered peptone water (BPW). All tests were carried out at 8–22 h (10–22 h for fresh spinach). Methods: Ground beef, beef trim, and spinach were co-inoculated with E. coli O157:H7, non-O157 STECs, and Salmonella spp. and analyzed for E. coli O157:H7 and non-O157 STECs after an 8-22 h enrichment in BPW for the beef matrices and after a 10–22 h enrichment in BPW for spinach. The chicken matrices were inoculated with E. coli O157:H7 only and analyzed after an 8–22 h enrichment in BPW. The iQ-Check Free DNA Removal Solution workflow was utilized for all matrices. Confirmations at the 22 h time point and method comparisons were conducted with the appropriate reference method as outlined in the U.S. Food and Drug Administration Bacteriological Analytical Manual Chapter 4A or the U.S. Department of Agriculture Food Safety and Inspection Service Microbiology Laboratory Guidebook Chapters 5.09 and 5B.05. For the iQ-Check STEC VirX and STEC SerO Kits, inclusivity and exclusivity were also performed. Results: The two inclusivity and exclusivity evaluations indicated that the test methods can accurately detect the target analytes and correctly excluded nontarget organisms after 8 h of enrichment. In the method comparison study, the iQ-Check E. coli O157:H7 and STEC VirX and STEC SerO test kits demonstrated no statistically significant differences between candidate and reference method results or between presumptive and confirmed results for all food matrices analyzed and the two time points (8 or 10 and 22 h). Both time points produced the same results, with no discrepancies. Conclusions: The iQ-Check real-time PCR kits are effective methods for the detection of E. coli O157 and non-O157 STECs (both the virulence factors and the O groups) from raw ground beef, raw beef trim, and fresh spinach in 375 g samples enriched in BPW for 8–22 h (10–22 h for fresh spinach). In addition, the iQ-Check E. coli O157 Kit is effective in detecting E. coli O157 in 25 g samples of raw chicken breast without skin, raw chicken thigh with skin, mechanically separated chicken, and raw ground pork. The iQ-Check test kits allow the end user to pair enrichments for multiple target analytes, allowing the user to prepare a single enrichment and perform a single DNA extraction. The Free DNA Removal Solution removes free DNA from samples prior to PCR analysis, protecting DNA from intact and living cells. Highlights: The method modifications were granted based on the data collected.


2009 ◽  
Vol 92 (6) ◽  
pp. 1865-1870 ◽  
Author(s):  
Wendy F Lauer ◽  
Caroline D Sidi ◽  
Jean-Philippe Tourniaire ◽  
Thomas Hammack

Abstract iQ-Check Salmonella II is a real-time PCR kit for detection of Salmonella in foods. Specific oligonucleotide probes are used to detect target DNA during the amplification, by hybridizing to the amplicons. These probes are linked to a fluorophore, which fluoresces only when hybridized to the target sequence. As part of an Emergency Response Validation due to a massive outbreak and subsequent recall, peanut butter was tested to compare the performance of iQ-Check Salmonella II to the U.S. Food and Drug Administration's Bacteriological Analytical Manual (FDA-BAM) reference method for detection of Salmonella. A single enrichment in buffered peptone water was used for a reduced enrichment time of 21 1 h over the 48 h reference method. There was no significant difference in the performance of the iQ-Check kit when compared to the FDA-BAM method, as determined by Chi-square analysis. All samples identified as positive by iQ-Check were confirmed by reference method protocol.


2013 ◽  
Vol 96 (3) ◽  
pp. 508-515
Author(s):  
Wendy F Lauer ◽  
Jean-Philippe Tourniaire

Abstract A comparative evaluation study of the Bio-Rad® iQ-Check™Listeria species Kit (Bio-Rad Laboratories, Hercules, CA) was conducted at Q Laboratories, Inc., Cincinnati, OH. iQ-Check is a rapid method based on real-time PCR amplification and detection of all species of Listeria, including L. grayi, in food and environmental samples. The iQ-Check method was compared to the Health Canada MFHPB-30 reference method for the analysis of five ready-to-eat meats—deli turkey, hot dogs, liver paté, raw fermented sausage, and deli ham—and one stainless steel surface. Each food matrix was analyzed at two contamination levels: a low level at 0.2–2 CFU/25 g and a high level at 2–5 CFU/25 g. The environmental surfaces were analyzed at a low level of 0.2–2 CFU/5 cm2 sampling area and a high level of 2–5 CFU/5 cm2 sampling area. There were 20 replicates per contamination level and five control replicates at 0 CFU/25 g or 0 CFU/5 cm2 sampling area (uninoculated). All samples that were detected by iQ-Check were subsequently confirmed by reference method protocol. There was no significant difference in the number of positive samples detected by the iQ-Check Listeria spp. Kit in comparison to the Health Canada MFHPB-30 method for all matrixes tested.


2015 ◽  
Vol 98 (5) ◽  
pp. 1301-1314 ◽  
Author(s):  
Jonathan Cloke ◽  
Erin Crowley ◽  
Patrick Bird ◽  
Ben Bastin ◽  
Jonathan Flannery ◽  
...  

Abstract The Thermo Scientific™ SureTect™ Escherichia coli O157:H7 Assay is a new real-time PCR assay which has been validated through the AOAC Research Institute (RI) Performance Tested MethodsSM program for raw beef and produce matrixes. This validation study specifically validated the assay with 375 g 1:4 and 1:5 ratios of raw ground beef and raw beef trim in comparison to the U.S. Department of Agriculture, Food Safety Inspection Service, Microbiology Laboratory Guidebook (USDS-FSIS/MLG) reference method and 25 g bagged spinach and fresh apple juice at a ratio of 1:10, in comparison to the reference method detailed in the International Organization for Standardization 16654:2001 reference method. For raw beef matrixes, the validation of both 1:4 and 1:5 allows user flexibility with the enrichment protocol, although which of these two ratios chosen by the laboratory should be based on specific test requirements. All matrixes were analyzed by Thermo Fisher Scientific, Microbiology Division, Vantaa, Finland, and Q Laboratories Inc, Cincinnati, Ohio, in the method developer study. Two of the matrixes (raw ground beef at both 1:4 and 1:5 ratios) and bagged spinach were additionally analyzed in the AOAC-RI controlled independent laboratory study, which was conducted by Marshfield Food Safety, Marshfield, Wisconsin. Using probability of detection statistical analysis, no significant difference was demonstrated by the SureTect kit in comparison to the USDA FSIS reference method for raw beef matrixes, or with the ISO reference method for matrixes of bagged spinach and apple juice. Inclusivity and exclusivity testing was conducted with 58 E. coli O157:H7 and 54 non-E. coli O157:H7 isolates, respectively, which demonstrated that the SureTect assay was able to detect all isolates of E. coli O157:H7 analyzed. In addition, all but one of the nontarget isolates were correctly interpreted as negative by the SureTect Software. The single isolate giving a positive result was an E. coli O157:NM isolate. Nonmotile isolates of E. coli O157 have been demonstrated to still contain the H7 gene; therefore, this result is not unexpected. Robustness testing was conducted to evaluate the performance of the SureTect assay with specific deviations to the assay protocol, which were outside the recommended parameters and which are open to variation. This study demonstrated that the SureTect assay gave reliable performance. A final study to verify the shelf life of the product, under accelerated conditions was also conducted.


2012 ◽  
Vol 95 (5) ◽  
pp. 1495-1504 ◽  
Author(s):  
Lily Y Wong ◽  
Yanxiang Cao ◽  
Priya Balachandran ◽  
Patrick Zoder ◽  
Manohar R Furtado ◽  
...  

Abstract Modern molecular methods offer the advantages of simplicity and short time-to-results compared to traditional culture methods. We describe the validation of a new Real-Time PCR method to detect E. coli O157:H7 in five food matrixes. The complete system consists of the MicroSEQ®E. coli O157:H7 Detection Kit, sample preparation (two sample preparation methods, the PrepSEQ® Nucleic Acid Extraction Kit and the PrepSEQ Rapid Spin Sample Preparation Kit, were validated), the Applied Biosystems 7500 Fast Real-Time PCR instrument, and RapidFinder™ Express software. The test method was compared to the U.S. Department of Agriculture Microbiology Laboratory Guidebook 5.04 reference method for detecting E. coli O157:H7 in 25 g and 375 g ground beef and beef trim, and to the ISO 16654 reference method for detecting E. coli O157:H7 in 25 g spinach, orange juice, and apple juice. The MicroSEQ E. coli O157:H7 Detection Kit showed equivalent detection compared to the corresponding reference method based on Mantel-Haenszel Chi-square statistics for all matrixes tested. An independent validation confirmed these findings on ground beef. The MicroSEQ kit detected all 51 E. coli O157:H7 strains tested and showed good discrimination against an exclusivity panel of 30 strains.


2017 ◽  
Vol 80 (5) ◽  
pp. 829-836 ◽  
Author(s):  
Pina M. Fratamico ◽  
Lori K. Bagi ◽  
Aisha Abdul-Wakeel

ABSTRACT Shiga toxin–producing Escherichia coli (STEC) O157:H7 and serogroups O26, O45, O103, O111, O121, and O145 are often referred to as the “top seven” STEC, and these have been declared to be adulterants in beef by the U.S. Department of Agriculture (USDA) Food Safety and Inspection Service (FSIS). The aim of this work was to compare the methods described in the USDA FSIS Microbiology Laboratory Guidebook (MLG) to a two-stage Applied Biosystems RapidFinder STEC real-time PCR method to test for the top seven STEC in raw ground beef. The specificity of the RapidFinder workflow that targets non-O157 STEC O-antigen genes, stx1, stx2, and eae, and E. coli O157–specific targets was determined with 132 top seven STEC strains and 283 exclusion strains. All inclusion strains were positive, and all exclusion strains gave negative results with the RapidFinder assay. Strains carrying all of the known variants of stx1 and stx2, including stx2f and stx2g, were also detected. For RapidFinder analysis, 375-g ground beef samples spiked with ≥4 CFU of representative STEC strains were enriched in 1 L of tryptic soy broth (TSB) for 10 h at 42 ± 1°C, and for the MLG method, 325-g samples were similarly spiked and enriched in 975 mL of modified TSB for 15 h at 42 ± 1°C. Following DNA extraction, real-time PCR was performed using RapidFinder Express software, and for the MLG method, the BAX Real-Time PCR STEC Suite and the BAX Real-Time E. coli O157:H7 assay were used with the BAX System Q7 software. Following immunomagnetic separation, presumptive colonies from modified Rainbow agar O157 plates were confirmed by the real-time PCR assays. Results of the RapidFinder and BAX assays were similar; all samples were positive after 10 and 15 h of enrichment, respectively. Isolation and confirmation of isolates was possible on all samples, except that two O111:NM strains could not be isolated from a portion of the inoculated samples. Thus, the RapidFinder system can be used for routine and rapid detection of the top seven STEC in beef.


2014 ◽  
Vol 77 (2) ◽  
pp. 180-188 ◽  
Author(s):  
PINA M. FRATAMICO ◽  
JAMIE L. WASILENKO ◽  
BRADLEY GARMAN ◽  
DANIEL R. DeMARCO ◽  
STEPHEN VARKEY ◽  
...  

The “top-six” non-O157 Shiga toxin–producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) most frequently associated with outbreaks and cases of foodborne illnesses have been declared as adulterants in beef by the U.S. Department of Agriculture Food Safety and Inspection Service (FSIS). Regulatory testing in beef began in June 2012. The purpose of this study was to evaluate the DuPont BAX System method for detecting these top six STEC strains and strains of E. coli O157:H7. For STEC, the BAX System real-time STEC suite was evaluated, including a screening assay for the stx and eae virulence genes and two panel assays to identify the target serogroups: panel 1 detects O26, O111, and O121, and panel 2 detects O45, O103, O145. For E. coli O157:H7, the BAX System real-time PCR assay for this specific serotype was used. Sensitivity of each assay for the PCR targets was ≥1.23 × 103 CFU/ml in pure culture. Each assay was 100% inclusive for the strains tested (20 to 50 per assay), and no cross-reactivity with closely related strains was observed in any of the assays. The performance of the BAX System methods was compared with that of the FSIS Microbiology Laboratory Guidebook (MLG) methods for detection of the top six STEC and E. coli O157:H7 strains in ground beef and beef trim. Generally, results of the BAX System method were similar to those of the MLG methods for detecting non-O157 STEC and E. coli O157:H7. Reducing or eliminating novobiocin in modified tryptic soy broth (mTSB) may improve the detection of STEC O111 strains; one beef trim sample inoculated with STEC O111 produced a negative result when enriched in mTSB with 8 mg/liter novobiocin but was positive when enriched in mTSB without novobiocin. The results of this study indicate the feasibility of deploying a panel of real-time PCR assay configurations for the detection and monitoring of the top six STEC and E. coli O157:H7 strains in beef. The approach could easily be adapted for additional multiplex assays should regulations expand to include other O serogroups or virulence genes.


Food Control ◽  
2020 ◽  
Vol 108 ◽  
pp. 106790 ◽  
Author(s):  
Alejandro Garrido-Maestu ◽  
Sarah Azinheiro ◽  
Joana Carvalho ◽  
Pablo Fuciños ◽  
Marta Prado

2011 ◽  
Vol 94 (4) ◽  
pp. 1106-1116 ◽  
Author(s):  
Priya Balachandran ◽  
Yanxiang Cao ◽  
Lily Wong ◽  
Manohar R Furtado ◽  
Olga V Petrauskene ◽  
...  

Abstract Real-time PCR methods for detecting foodborne pathogens offer the advantages of simplicity and quick time-to-results compared to traditional culture methods. In this study, the MicroSEQ® real-time PCR system was evaluated for detection of Salmonella spp. in 10 different food matrixes following the AOAC Research Institute's Performance Tested MethodSM validation program. In addition, the performance of the MicroSEQ system was evaluated for the detection of Salmonella in peanut butter as a part of the Emergency Response Validation Program sponsored by the AOAC Research Institute. The system was compared to the ISO 6579 reference method using a paired-study design for detecting Salmonella spp. in raw ground beef, raw chicken, raw shrimp, Brie cheese, shell eggs, cantaloupe, chocolate, black pepper, dry infant formula, and dry pet food. For the peanut butter study, the system was compared to the U.S. Food and Drug Administration's Bacteriological Analytical Manual procedures using an unpaired-study design. No significant difference in performance was observed between the MicroSEQ Salmonella spp. detection system and the corresponding reference methods for all 11 food matrixes. The MicroSEQ system detected all Salmonella strains tested, while showing good discrimination against detection of an exclusivity panel of 30 strains, with high accuracy.


2011 ◽  
Vol 74 (1) ◽  
pp. 6-12 ◽  
Author(s):  
F. SAVOYE ◽  
P. FENG ◽  
C. ROZAND ◽  
M. BOUVIER ◽  
A. GLEIZAL ◽  
...  

Enterohemorrhagic Escherichia coli O157:H7 is an important pathogen associated with infections caused by consumption of undercooked raw meat. Sensitive and rapid detection methods for E. coli O157:H7 are essential for the meat industry to ensure a safe meat supply. This study was conducted to compare the sensitivity of the VIDAS ultraperformance E. coli test (ECPT UP) with a noncommercial real-time (RT) PCR method and the U.S. Department of Agriculture, Food Safety and Inspection Service (USDA-FSIS) reference method for detecting E. coli O157:H7 in raw ground beef. Optimal enrichment times and the efficacy of testing different types of raw meat, either as individual samples (25 g) or as composites (375 g), were examined. For 25-g samples of each type of raw ground beef tested, 6 h of enrichment was sufficient for both the VIDAS ECPT UP and RT-PCR methods, but for 375-g samples, 24 h of enrichment was required. Both the VIDAS ECPT UP and RT-PCR methods produced results similar to those obtained with the USDA-FSIS reference method after 18 to 24 h of enrichment. The primer specificity of the RT-PCR assay and the highly specific phage ligand used in the VIDAS ECPT UP for target recognition enabled the detection of low levels of E. coli O157:H7 in 25 g of various types of raw ground beef. The tests also allowed the detection of E. coli O157:H7 in composite raw ground beef and trimmings in samples of up to 375 g.


Sign in / Sign up

Export Citation Format

Share Document