scholarly journals Monitoring Disopyramide, Lidocaine, and Quinidine by Micellar Liquid Chromatography

2011 ◽  
Vol 94 (2) ◽  
pp. 537-542 ◽  
Author(s):  
Enrique Ochoa-Aranda ◽  
Josep Esteve-Romero ◽  
Maria Rambla-Alegre ◽  
Adri Martinavarro-Domnguez ◽  
Jos V Marcos-Toms ◽  
...  

Abstract A micellar liquid chromatography (MLC) method using a C18 column was developed to determine three antiarrhythmic drugsdisopyramide, lidocaine, and quinidinethat are most usually monitored in serum samples. After the application of an interpretative strategy for optimization of sodium dodecyl sulfate (SDS) and modifier concentrations in order to ensure the minimum analysis time, maximum sensitivity, and good resolution, the optimum chromatographic conditions for the determination of the three antiarrhythmics were flow rate, 1 mL/min; injection volume, 20 L; separation temperature, 25C; mobile phase, 150 mmol/L SDS-7 (v/v) butanolphosphate buffer, 10 mmol/L, pH 70.9 (w/v) NaCl; and detection at 214 nm. The calibration curves for the drugs were linear (r2 > 0.999). The intraday and interday precisions were lower than 3.9 (CV). Recoveries were 100 0.6 when the method was applied to both serum samples spiked with the antiarrhythmics (n 10) and real serum samples. In all cases, the results were similar to those obtained using the reference method (fluorescence polarization immunoassay) usually used in the Spanish hospital. The proposed method is useful for hospital monitoring of the antiarrhythmics by direct injection into the chromatograph.

2005 ◽  
Vol 88 (2) ◽  
pp. 428-435 ◽  
Author(s):  
Maria-Elisa Capella-Peiró ◽  
Devasish Bose ◽  
Abhilasha Durgbanshi ◽  
Adriá Martinavarro-Domínguez ◽  
Mayte Gil-Agustí ◽  
...  

Abstract A simple and reliable micellar liquid chromatographic method was developed for the simultaneous determination of 3 opiates (codeine, morphine, and thebaine) in serum, using direct injection and ultraviolet detection. The separation of the drugs was optimized on a C18 column, thermostatically controlled at 25°C, by evaluating mobile phases containing sodium dodecyl sulfate (SDS) and various modifiers (propanol, butanol, or pentanol). Adequate resolution of the opiates was obtained with a chemometrics approach, in which retention was modeled as a first step by using the retention factors for several mobile phases. Next, an optimization criterion that takes into account the position and shape of the chromatographic peaks was applied. The 3 opiates were totally resolved and determined in 12 min with the mobile phase 0.15M SDS–7% (v/v) butanol buffered at pH 7. The limits of detection for codeine and morphine were greatly improved by using fluorimetric detection. Repeatability and intermediate precision were tested for 3 different concentrations of the drugs, and the relative standard deviations were <0.8% for most of the assays. Finally, the method was successfully applied to the determination of morphine and codeine in serum samples.


2004 ◽  
Vol 516 (1-2) ◽  
pp. 135-140 ◽  
Author(s):  
José Luis Vı́lchez ◽  
Lilia Araujo ◽  
Avismelsi Prieto ◽  
Alberto Navalón

2011 ◽  
Vol 94 (4) ◽  
pp. 1082-1088 ◽  
Author(s):  
Sandeep-Kumar mourya ◽  
Swati Dubey ◽  
Abhilasha Durgabanshi ◽  
Sudheer Kumar Shukla ◽  
Josep Esteve-Romero ◽  
...  

Abstract Presently, disulfram is used in aversion therapy for recovering alcoholics. It acts by inhibiting aldehyde dehydrogenase, leading to high blood levels of acetaldehyde. A simple direct injection micellar liquid chromatographic procedure was developed to determine disulfram in illicit preparations (ayurvedic, herbal, divine ash, and traditional medicine), as well as inpharmaceuticals and biological samples (urine). After application of a predictive optimization strategy, the proposed method was developed using a 0.1 M sodium dodecyl sulfate-butanol 4% (v/v) buffered to pH 7 as the mobile phase at a flow rate of 1 mL/min, an octyl silyl (C8) 150 mm column, and diode array detection at 248 nm. Under the above conditions, the analysis time was below 8 min. Validation studies were based on U.S. Food and Drug Administration guidelines. The LOD (3 × SD criterion) was 15 ng/mL and LOQ (10 × SD criterion) was 70 ng/mL for disulfram. The intraday and interday precisions were below 3.5%, recoveries were in the range of 97–102%, and robustness was below 3%. The optimized and validated micellar liquid chromatographic method was successfully applied to the determination of disulfram in ayurvedic, herbal, divine ash, and other samples. The procedure developed could also be used in the felds of QC, routine analysis, and pharmacokinetic studies.


2013 ◽  
Vol 96 (6) ◽  
pp. 1315-1324 ◽  
Author(s):  
Mohamed I Walash ◽  
Fathalla Belal ◽  
Nahed El-Enany ◽  
Manal Eid ◽  
Rania N El-Shaheny

Abstract A stability-indicating micellar liquid chromatography (MLC) method was developed and validated for the assay of floctafenine (FLF) in the presence of its degradation product and main metabolite, floctafenic acid (FLA). The analysis was carried out on a CLC Shim-Pack octyl silane (C8) column (150 × 4.6 mm id, 5 μm particle size) using a micellar mobile phase consisting of 0.15 M sodium dodecyl sulfate, 10% n-propanol, and 0.3% triethylamine in 0.02 M orthophosphoric acid (pH = 3). The mobile phase was pumped at a flow rate of 1.0 mL/min with UV detection at 360 nm. The method showed good linearity for FLF and FLA over the concentration ranges of 0.5–25.0 and 0.4–10.0 μg/mL, with LODs of 0.16 and 0.12 μg/mL, respectively. The developed method was successfully applied to the determination of FLF in commercial dispersible tablets, with mean recovery of 98.87 ± 1.37%. Also, the proposed method was specific for the analysis of FLF in presence of the co-formulated drug thiocolchicoside in laboratory-prepared tablets, with mean recovery of 100.50 ± 1.07%. Statistical comparison of the results obtained by the proposed MLC method with those obtained by a comparison method showed good agreement. Moreover, the method was extended to study the degradation behavior of FLF under different International Conference on Harmonization recommended conditions such as alkaline, acidic, oxidative, thermal, and photolytic. The method was further applied for direct determination of FLA as the main metabolite of FLF in human plasma without prior extraction steps, with mean recovery of 110.50 ± 6.5%.


2002 ◽  
Vol 48 (10) ◽  
pp. 1696-1702 ◽  
Author(s):  
Adrián Martinavarro-Domínguez ◽  
Maria-Elisa Capella-Peiró ◽  
Mayte Gil-Agustí ◽  
José V Marcos-Tomás ◽  
Josep Esteve-Romero

Abstract Background: We developed a micellar liquid chromatographic (MLC) procedure for the determination of three extensively monitored antiepileptics in serum samples: carbamazepine, phenobarbital, and phenytoin. Methods: We determined the composition of the mobile phase after modeling the elution behavior of the antiepileptics in hybrid micellar mobile phases of sodium dodecyl sulfate (SDS) with different organic modifiers (propanol, butanol, or pentanol) in an experimental design that used five mobile phases, a C18 column, and ultraviolet detection. In the micellar chromatographic system, the serum samples can be injected directly. Results: The optimum mobile phase was 70 mL/L butanol in 0.05 mol/L SDS, pH 7, in which the three antiepileptics were resolved in <10 min. Intra- and interday precision was evaluated at four different drug concentrations within the therapeutic range (n =10); CVs were <2.1%. The method was applied to the analysis of 120 serum samples, and results were similar to those obtained by the TDx® method. Conclusions: The MLC method allows chromatographic determination of three antiepileptics, using an interpretative strategy of optimization, without pretreatment of the serum samples and with direct injection in a hybrid micellar mobile phase of SDS–butanol. The method provides complete resolution and quantification of mixtures of two and three antiepileptics.


Author(s):  
Nada F. Atta ◽  
Ghada Abdo ◽  
Ahmed Elzatahry ◽  
Ahmed Galal ◽  
Samar Hassan

A novel composite for the electrochemical sensing of tramadol (Tr) was developed by the inclusion of metallocene mediator between two layers of conducting poly(3,4-ethylenedioxythiophene) (PEDOT) polymer, in presence of sodium dodecyl sulfate (SDS); (P/mediator/P…SDS). Three charge transfer mediators were evaluated: ferrocene carboxylic acid (FC1), ferrocene (FC2) and cobaltocene (CC) for Tr electrocatalytic oxidation. FC1-charge mediator showed relatively higher current response that was assisted by the electronic conduction of the polymer film. Moreover, SDS presented a great impact, resulting in the enhancement of the preconcentration/accumulation of Tr ions at the interface leading to faster electron transfer. In addition, the practical application of the proposed FC1 composite for the determination of Tr in real urine and serum samples was successfully achieved with adequate recovery results. Very low detection limits of 18.6 nM and 16 nM in the linear dynamic ranges of 7 µM to 300 µM and 5 µM to 280 µM, respectively, were obtained at the proposed sensor. Furthermore, the simultaneous determination of of Tr with common interfering species; paracetamol (PAPA), morphine (MO), dopamine (DA), ascorbic acid (AA) and uric acid (UA) proved excellent with good resolution and large potential peaks separation. The excellent characteristics of the proposed composite such as high reproducibility, good sensitivity, selectivity, anti-interference ability and good stability enhanced its application for determination of other narcotics drugs.


2010 ◽  
Vol 120 (3) ◽  
pp. 915-920 ◽  
Author(s):  
Mei-Liang Chin-Chen ◽  
Samuel Carda-Broch ◽  
Devasish Bose ◽  
Josep Esteve-Romero

2012 ◽  
Vol 9 (1) ◽  
pp. 443-450 ◽  
Author(s):  
Hoonka Subhra ◽  
Bose Devasish ◽  
Esteve-Romero Josep ◽  
Durgbanshi Abhilasha

A simple chromatographic procedure is reported for the determination of some less prescribed but equally important benzodiazepines (Clotiazepam, clozapine and pinazepam) in serum. The optimization studies have been made in CN, C18and C8columns, using mobile phase containing sodium dodecyl sulphate (SDS) modified with either propanol, butanol or pentanol. The method proposed for the determination of the three benzodiazepines using a mobile phase of 0.13 M SDS, 2.4% pentanol-0.01 M phosphate buffer- 0.1% triethylamine (pH 7) at 25°C and UV detection (240 nm) in a C8column. The serum samples was injected directly, without any pretreatment, eluted in less than 8 min, in accordance to their relative polarities, as indicated by their octanol-water partition coefficients. The limits of detection (ng/mL) was in the 1.6 to 5.6 and 7 to 87 range, for aqueous and serum samples, respectively. Repeatability and intermediate precision was tested for three different concentrations of the drugs, resulting in the 0.1 to 2 range. The results obtained here for the separation of the three benzodiazepines in serum were also counter checked at Department of Bio-analytical Chemistry, Universitat Jaume I, Castelló, Spain.


Sign in / Sign up

Export Citation Format

Share Document