Construct-Specific Loop-Mediated Isothermal Amplification: Rapid Detection of Genetically Modified Crops with Insect Resistance or Herbicide Tolerance

2020 ◽  
Vol 103 (5) ◽  
pp. 1191-1200
Author(s):  
Monika Singh ◽  
Deepa Pal ◽  
Payal Sood ◽  
Gurinderjit Randhawa

Abstract Background Insect resistant and herbicide tolerant genetically modified (GM) events have been approved in many countries. Screening methods could facilitate preliminary testing to check the GM status, which may target control elements, transgenes, and marker genes or construct regions. Among these, methods targeting the construct region, i.e., the junction between two genetic elements of a transgenic cassette are more specific. Objective Loop-mediated isothermal amplification (LAMP) assays targeting three construct regions were developed; between Cauliflower Mosaic Virus 35S promoter and cry1Ac gene (p35S-cry1Ac), cry2Ab2 gene and nos terminator (cry2Ab2-tnos), and cp4-epsps gene and nos terminator (cp4epsps-tnos). Method LAMP assays were performed by incubation at constant temperatures for selected targets. Positive amplification was detected as a change in color from orange to green on addition of SYBR® Green dye in visual LAMP and as real-time amplification curves in real-time LAMP. Results These assays showed acceptable specificity and sensitivity. Visual LAMP was found to be sensitive enough to detect as low as 0.005%, equivalent to two target copies. Real-time LAMP assays were able to detect as low as four copies of the target within 40 min, making them suitable for rapid on-site testing for GM organisms (GMO). Practical utility was also verified using spiked test samples. Conclusions These assays could be employed to address some of the biosafety or post-release monitoring issues, as well as to check for approved and unapproved GM events in a country. Highlights LAMP assays targeting three construct regions have been developed, enabling screening for approved or unapproved GMO.

2021 ◽  
Vol 12 ◽  
Author(s):  
Domenico Rizzo ◽  
Daniele Da Lio ◽  
Alessandra Panattoni ◽  
Chiara Salemi ◽  
Giovanni Cappellini ◽  
...  

Tomato brown rugose fruit virus (ToBRFV) represents an emerging viral threat to the productivity of tomato and pepper protected cultivation worldwide. This virus has got the status of quarantine organism in the European Union (EU) countries. In particular, tomato and pepper seeds will need to be free of ToBRFV before entering the EU and before coming on the market. Thus, lab tests are needed. Here, we develop and validate a one-step reverse transcription LAMP platform for the detection of ToBRFV in tomato and pepper leaves, by real-time assay [reverse transcription loop-mediated isothermal amplification (RT-LAMP)] and visual screening (visual RT-LAMP). Moreover, these methods can also be applied successfully for ToBRFV detection in tomato and pepper seeds. The diagnostic specificity and sensitivity of both RT-LAMP and visual RT-LAMP are both 100%, with a detection limit of nearly 2.25 fg/μl, showing the same sensitivity as RT-qPCR Sybr Green, but 100 times more sensitive than end-point RT-PCR diagnostic methods. In artificially contaminated seeds, the proposed LAMP assays detected ToBRFV in 100% of contaminated seed lots, for up to 0.025–0.033% contamination rates in tomato and pepper, respectively. Our results demonstrate that the proposed LAMP assays are simple, inexpensive, and sensitive enough for the detection of ToBRFV, especially in seed health testing. Hence, these methods have great potential application in the routine detection of ToBRFV, both in seeds and plants, reducing the risk of epidemics.


2020 ◽  
Vol 21 (8) ◽  
pp. 2826 ◽  
Author(s):  
Renfei Lu ◽  
Xiuming Wu ◽  
Zhenzhou Wan ◽  
Yingxue Li ◽  
Xia Jin ◽  
...  

COVID-19 has become a major global public health burden, currently causing a rapidly growing number of infections and significant morbidity and mortality around the world. Early detection with fast and sensitive assays and timely intervention are crucial for interrupting the spread of the COVID-19 virus (SARS-CoV-2). Using a mismatch-tolerant amplification technique, we developed a simple, rapid, sensitive and visual reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for SARS-CoV-2 detection based on its N gene. The assay has a high specificity and sensitivity, and robust reproducibility, and its results can be monitored using a real-time PCR machine or visualized via colorimetric change from red to yellow. The limit of detection (LOD) of the assay is 118.6 copies of SARS-CoV-2 RNA per 25 μL reaction. The reaction can be completed within 30 min for real-time fluorescence monitoring, or 40 min for visual detection when the template input is more than 200 copies per 25 μL reaction. To evaluate the viability of the assay, a comparison between the RT-LAMP and a commercial RT-qPCR assay was made using 56 clinical samples. The SARS-CoV-2 RT-LAMP assay showed perfect agreement in detection with the RT-qPCR assay. The newly-developed SARS-CoV-2 RT-LAMP assay is a simple and rapid method for COVID-19 surveillance.


2018 ◽  
Vol 101 (5) ◽  
pp. 1657-1660 ◽  
Author(s):  
Monika Singh ◽  
Rajesh K Bhoge ◽  
Gurinderjit Randhawa

Abstract Background: Confirming the integrity of seed samples in powdered form is important prior to conducting a genetically modified organism (GMO) test. Rapid onsite methods may provide a technological solution to check for genetically modified (GM) events at ports of entry. In India, Bt cotton is the commercialized GM crop with four approved GM events; however, 59 GM events have been approved globally. GMO screening is required to test for authorized GM events. The identity and amplifiability of test samples could be ensured first by employing endogenous genes as an internal control. Objective: A rapid onsite detection method was developed for an endogenous reference gene, stearoyl acyl carrier protein desaturase (Sad1) of cotton, employing visual and real-time loop-mediated isothermal amplification (LAMP). Methods: The assays were performed at a constant temperature of 63°C for 30 min for visual LAMP and 62ºC for 40 min for real-time LAMP. Positive amplification was visualized as a change in color from orange to green on addition of SYBR® Green or detected as real-time amplification curves. Results: Specificity of LAMP assays was confirmed using a set of 10 samples. LOD for visual LAMP was up to 0.1%, detecting 40 target copies, and for real-time LAMP up to 0.05%, detecting 20 target copies. Conclusions: The developed methods could be utilized to confirm the integrity of seed powder prior to conducting a GMO test for specific GM events of cotton. Highlights: LAMP assays for the endogenous Sad1 gene of cotton have been developed to be used as an internal control for onsite GMO testing in cotton.


2020 ◽  
Vol 8 (9) ◽  
pp. 1301
Author(s):  
Dagmar Stehlíková ◽  
Pavel Beran ◽  
Stephen P. Cohen ◽  
Vladislav Čurn

Xanthomonas gardneri is one of the causal agents of bacterial spot (BS), an economically important bacterial disease of tomato and pepper. Field-deployable and portable loop-mediated isothermal amplification (LAMP)-based instruments provide rapid and sensitive detection of plant pathogens. In order to rapidly and accurately identify and differentiate X. gardneri from other BS-causing Xanthomonas spp., we optimized a new real-time monitoring LAMP-based method targeting the X. gardneri-specific hrpB gene. Specificity and sensitivity of real-time and colorimetric LAMP assays were tested on the complex of bacterial strains pathogenic to tomato and pepper and on plants infected by the pathogen. The assay detection limit was 1 pg/μL of genomic DNA with an assay duration of only 30 min. The use of portable and handheld instruments allows for fast analysis, reducing the diagnosis time, and can contribute to proper disease management and control of X. gardneri. Due to the high efficiency of this method, we suggest its use as a standard diagnostic tool during phytosanitary controls.


Sign in / Sign up

Export Citation Format

Share Document