scholarly journals Indirect predictions with a large number of genotyped animals using the algorithm for proven and young

2020 ◽  
Vol 98 (6) ◽  
Author(s):  
Andre L S Garcia ◽  
Yutaka Masuda ◽  
Shogo Tsuruta ◽  
Stephen Miller ◽  
Ignacy Misztal ◽  
...  

Abstract Reliable single-nucleotide polymorphisms (SNP) effects from genomic best linear unbiased prediction BLUP (GBLUP) and single-step GBLUP (ssGBLUP) are needed to calculate indirect predictions (IP) for young genotyped animals and animals not included in official evaluations. Obtaining reliable SNP effects and IP requires a minimum number of animals and when a large number of genotyped animals are available, the algorithm for proven and young (APY) may be needed. Thus, the objectives of this study were to evaluate IP with an increasingly larger number of genotyped animals and to determine the minimum number of animals needed to compute reliable SNP effects and IP. Genotypes and phenotypes for birth weight, weaning weight, and postweaning gain were provided by the American Angus Association. The number of animals with phenotypes was more than 3.8 million. Genotyped animals were assigned to three cumulative year-classes: born until 2013 (N = 114,937), born until 2014 (N = 183,847), and born until 2015 (N = 280,506). A three-trait model was fitted using the APY algorithm with 19,021 core animals under two scenarios: 1) core 2013 (random sample of animals born until 2013) used for all year-classes and 2) core 2014 (random sample of animals born until 2014) used for year-class 2014 and core 2015 (random sample of animals born until 2015) used for year-class 2015. GBLUP used phenotypes from genotyped animals only, whereas ssGBLUP used all available phenotypes. SNP effects were predicted using genomic estimated breeding values (GEBV) from either all genotyped animals or only core animals. The correlations between GEBV from GBLUP and IP obtained using SNP effects from core 2013 were ≥0.99 for animals born in 2013 but as low as 0.07 for animals born in 2014 and 2015. Conversely, the correlations between GEBV from ssGBLUP and IP were ≥0.99 for animals born in all years. IP predictive abilities computed with GEBV from ssGBLUP and SNP predictions based on only core animals were as high as those based on all genotyped animals. The correlations between GEBV and IP from ssGBLUP were ≥0.76, ≥0.90, and ≥0.98 when SNP effects were computed using 2k, 5k, and 15k core animals. Suitable IP based on GEBV from GBLUP can be obtained when SNP predictions are based on an appropriate number of core animals, but a considerable decline in IP accuracy can occur in subsequent years. Conversely, IP from ssGBLUP based on large numbers of phenotypes from non-genotyped animals have persistent accuracy over time.

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 266
Author(s):  
Hossein Mehrban ◽  
Masoumeh Naserkheil ◽  
Deuk Hwan Lee ◽  
Chungil Cho ◽  
Taejeong Choi ◽  
...  

The weighted single-step genomic best linear unbiased prediction (GBLUP) method has been proposed to exploit information from genotyped and non-genotyped relatives, allowing the use of weights for single-nucleotide polymorphism in the construction of the genomic relationship matrix. The purpose of this study was to investigate the accuracy of genetic prediction using the following single-trait best linear unbiased prediction methods in Hanwoo beef cattle: pedigree-based (PBLUP), un-weighted (ssGBLUP), and weighted (WssGBLUP) single-step genomic methods. We also assessed the impact of alternative single and window weighting methods according to their effects on the traits of interest. The data was comprised of 15,796 phenotypic records for yearling weight (YW) and 5622 records for carcass traits (backfat thickness: BFT, carcass weight: CW, eye muscle area: EMA, and marbling score: MS). Also, the genotypic data included 6616 animals for YW and 5134 for carcass traits on the 43,950 single-nucleotide polymorphisms. The ssGBLUP showed significant improvement in genomic prediction accuracy for carcass traits (71%) and yearling weight (99%) compared to the pedigree-based method. The window weighting procedures performed better than single SNP weighting for CW (11%), EMA (11%), MS (3%), and YW (6%), whereas no gain in accuracy was observed for BFT. Besides, the improvement in accuracy between window WssGBLUP and the un-weighted method was low for BFT and MS, while for CW, EMA, and YW resulted in a gain of 22%, 15%, and 20%, respectively, which indicates the presence of relevant quantitative trait loci for these traits. These findings indicate that WssGBLUP is an appropriate method for traits with a large quantitative trait loci effect.


Author(s):  
Egill Gautason ◽  
Goutam Sahana ◽  
Guosheng Su ◽  
Baldur Helgi Benjamínsson ◽  
Guðmundur Jóhannesson ◽  
...  

Abstract Icelandic Cattle is a local dairy cattle breed in Iceland. With about 26,000 breeding females, it is by far the largest among the indigenous Nordic cattle breeds. The objective of this study was to investigate the feasibility of genomic selection in Icelandic Cattle. Pedigree-based best linear unbiased prediction (PBLUP) and single-step genomic best linear unbiased prediction (ssGBLUP) were compared. Accuracy, bias, and dispersion of estimated breeding values (EBV) for milk yield (MY), fat yield (FY), protein yield (PY), and somatic cell score (SCS) were estimated in a cross validation-based design. Accuracy (r) was estimated by the correlation between EBV and corrected phenotype in a validation set. The accuracy (r) of predictions using ssGBLUP increased by 13, 23, 19 and 20 percentage points for MY, FY, PY, and SCS for genotyped animals, compared to PBLUP. The accuracy of non-genotyped animals was not improved for MY and PY, but increased by 0.9 and 3.5 percentage points for FY and SCS. We used the linear regression (LR) method to quantify relative improvements in accuracy, bias (∆), and dispersion (b) of EBV. Using the LR method, the relative improvements in accuracy of validation from PBLUP to ssGBLUP were 43%, 60%, 50%, and 48% for genotyped animals for MY, FY, PY, and SCS. Single-step GBLUP EBV were less underestimated (∆), and less over-dispersed (b) than PBLUP EBV for FY and PY. Pedigree-based BLUP EBV were close to unbiased for MY and SCS. Single-step GBLUP underestimated MY EBV but overestimated SCS EBV. Based on the average accuracy of 0.45 for ssGBLUP EBV obtained in this study, selection intensities according to the breeding scheme of Icelandic Cattle, and assuming a generation interval of 2.0 years for sires of bulls, sires of dams and dams of bulls, genetic gain in Icelandic Cattle could be increased by about 50% relative to the current breeding scheme.


2014 ◽  
Vol 59 (No. 9) ◽  
pp. 409-415 ◽  
Author(s):  
J. Přibyl ◽  
J. Bauer ◽  
P. Pešek ◽  
J. Přibylová ◽  
L. Vostrý ◽  
...  

Estimated breeding values and genomic enhanced breeding values for milk production of young genotyped Holstein bulls were predicted using a conventional animal model, ridge regression genomic prediction procedure, genomic best linear unbiased prediction, single-step genomic best linear unbiased prediction, and one-step blending procedures. For prediction, the nation-wide database of domestic Czech production records was combined with deregressed proofs from Interbull files through 2008, which had been transformed by multiple across country evaluation to reflect domestic production conditions. 1259 genotyped bulls had already been proven in 2008. Analyses were run that used Interbull values only for these genotyped bulls and used Interbull values for all available sires. Predictions were validated by comparing correlations of breeding value predictions with estimated breeding values and daughter-yield-deviations after progeny test in 2012 of 140 young genotyped bulls and their associated reliabilities. Combining domestic data with Interbull estimated breeding values improved prediction of both estimated breeding values and genomic enhanced breeding values. Prediction by animal model (traditional estimated breeding values) using only the domestic database had 0.29 validated reliability of prediction; whereas combining the nation-wide domestic database with all available deregressed proofs for genotyped and non-genotyped sires from Interbull resulted in reliability of 0.34, compared to 0.36 when using Interbull data only. The highest reliabilities were for predictions from the single-step genomic best linear unbiased prediction procedure using combined data, or with all available deregressed proofs from Interbull only (one-step blending approach), which reached validated reliabilities for genomic enhanced breeding values predictions 0.53 and 0.54, respectively.  


2012 ◽  
Vol 52 (3) ◽  
pp. 115 ◽  
Author(s):  
D. Boichard ◽  
F. Guillaume ◽  
A. Baur ◽  
P. Croiseau ◽  
M. N. Rossignol ◽  
...  

Genomic selection is implemented in French Holstein, Montbéliarde, and Normande breeds (70%, 16% and 12% of French dairy cows). A characteristic of the model for genomic evaluation is the use of haplotypes instead of single-nucleotide polymorphisms (SNPs), so as to maximise linkage disequilibrium between markers and quantitative trait loci (QTLs). For each trait, a QTL-BLUP model (i.e. a best linear unbiased prediction model including QTL random effects) includes 300–700 trait-dependent chromosomal regions selected either by linkage disequilibrium and linkage analysis or by elastic net. This model requires an important effort to phase genotypes, detect QTLs, select SNPs, but was found to be the most efficient one among all tested ones. QTLs are defined within breed and many of them were found to be breed specific. Reference populations include 1800 and 1400 bulls in Montbéliarde and Normande breeds. In Holstein, the very large reference population of 18 300 bulls originates from the EuroGenomics consortium. Since 2008, ~65 000 animals have been genotyped for selection by Labogena with the 50k chip. Bulls genomic estimated breeding values (GEBVs) were made official in June 2009. In 2010, the market share of the young bulls reached 30% and is expected to increase rapidly. Advertising actions have been undertaken to recommend a time-restricted use of young bulls with a limited number of doses. In January 2011, genomic selection was opened to all farmers for females. Current developments focus on the extension of the method to a multi-breed context, to use all reference populations simultaneously in genomic evaluation.


2021 ◽  
Vol 104 (5) ◽  
pp. 5768-5793
Author(s):  
Sirlene F. Lázaro ◽  
Humberto Tonhati ◽  
Hinayah R. Oliveira ◽  
Alessandra A. Silva ◽  
André V. Nascimento ◽  
...  

2018 ◽  
Vol 135 (4) ◽  
pp. 251-262 ◽  
Author(s):  
Jeremy T. Howard ◽  
Tom A. Rathje ◽  
Caitlyn E. Bruns ◽  
Danielle F. Wilson-Wells ◽  
Stephen D. Kachman ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 569
Author(s):  
Chen Wei ◽  
Hanpeng Luo ◽  
Bingru Zhao ◽  
Kechuan Tian ◽  
Xixia Huang ◽  
...  

Genomic evaluations are a method for improving the accuracy of breeding value estimation. This study aimed to compare estimates of genetic parameters and the accuracy of breeding values for wool traits in Merino sheep between pedigree-based best linear unbiased prediction (PBLUP) and single-step genomic best linear unbiased prediction (ssGBLUP) using Bayesian inference. Data were collected from 28,391 yearlings of Chinese Merino sheep (classified in 1992–2018) at the Xinjiang Gonaisi Fine Wool Sheep-Breeding Farm, China. Subjectively-assessed wool traits, namely, spinning count (SC), crimp definition (CRIM), oil (OIL), and body size (BS), and objectively-measured traits, namely, fleece length (FL), greasy fleece weight (GFW), mean fiber diameter (MFD), crimp number (CN), and body weight pre-shearing (BWPS), were analyzed. The estimates of heritability for wool traits were low to moderate. The largest h2 values were observed for FL (0.277) and MFD (0.290) with ssGBLUP. The heritabilities estimated for wool traits with ssGBLUP were slightly higher than those obtained with PBLUP. The accuracies of breeding values were low to moderate, ranging from 0.362 to 0.573 for the whole population and from 0.318 to 0.676 for the genotyped subpopulation. The correlation between the estimated breeding values (EBVs) and genomic EBVs (GEBVs) ranged from 0.717 to 0.862 for the whole population, and the relative increase in accuracy when comparing EBVs with GEBVs ranged from 0.372% to 7.486% for these traits. However, in the genotyped population, the rank correlation between the estimates obtained with PBLUP and ssGBLUP was reduced to 0.525 to 0.769, with increases in average accuracy of 3.016% to 11.736% for the GEBVs in relation to the EBVs. Thus, genomic information could allow us to more accurately estimate the relationships between animals and improve estimates of heritability and the accuracy of breeding values by ssGBLUP.


2020 ◽  
Vol 98 (6) ◽  
Author(s):  
Johnna L Baller ◽  
Stephen D Kachman ◽  
Larry A Kuehn ◽  
Matthew L Spangler

Abstract Economically relevant traits are routinely collected within the commercial segments of the beef industry but are rarely included in genetic evaluations because of unknown pedigrees. Individual relationships could be resurrected with genomics, but this would be costly; therefore, pooling DNA and phenotypic data provide a cost-effective solution. Pedigree, phenotypic, and genomic data were simulated for a beef cattle population consisting of 15 generations. Genotypes mimicked a 50k marker panel (841 quantitative trait loci were located across the genome, approximately once per 3 Mb) and the phenotype was moderately heritable. Individuals from generation 15 were included in pools (observed genotype and phenotype were mean values of a group). Estimated breeding values (EBV) were generated from a single-step genomic best linear unbiased prediction model. The effects of pooling strategy (random and minimizing or uniformly maximizing phenotypic variation within pools), pool size (1, 2, 10, 20, 50, 100, or no data from generation 15), and generational gaps of genotyping on EBV accuracy (correlation of EBV with true breeding values) were quantified. Greatest EBV accuracies of sires and dams were observed when there was no gap between genotyped parents and pooled offspring. The EBV accuracies resulting from pools were usually greater than no data from generation 15 regardless of sire or dam genotyping. Minimizing phenotypic variation increased EBV accuracy by 8% and 9% over random pooling and uniformly maximizing phenotypic variation, respectively. A pool size of 2 was the only scenario that did not significantly decrease EBV accuracy compared with individual data when pools were formed randomly or by uniformly maximizing phenotypic variation (P > 0.05). Pool sizes of 2, 10, 20, or 50 did not generally lead to statistical differences in EBV accuracy than individual data when pools were constructed to minimize phenotypic variation (P > 0.05). Largest numerical increases in EBV accuracy resulting from pooling compared with no data from generation 15 were seen with sires with prior low EBV accuracy (those born in generation 14). Pooling of any size led to larger EBV accuracies of the pools than individual data when minimizing phenotypic variation. Resulting EBV for the pools could be used to inform management decisions of those pools. Pooled genotyping to garner commercial-level phenotypes for genetic evaluations seems plausible although differences exist depending on pool size and pool formation strategy.


Sign in / Sign up

Export Citation Format

Share Document