Short Communication: Investigation of the feasibility of genomic selection in Icelandic Cattle

Author(s):  
Egill Gautason ◽  
Goutam Sahana ◽  
Guosheng Su ◽  
Baldur Helgi Benjamínsson ◽  
Guðmundur Jóhannesson ◽  
...  

Abstract Icelandic Cattle is a local dairy cattle breed in Iceland. With about 26,000 breeding females, it is by far the largest among the indigenous Nordic cattle breeds. The objective of this study was to investigate the feasibility of genomic selection in Icelandic Cattle. Pedigree-based best linear unbiased prediction (PBLUP) and single-step genomic best linear unbiased prediction (ssGBLUP) were compared. Accuracy, bias, and dispersion of estimated breeding values (EBV) for milk yield (MY), fat yield (FY), protein yield (PY), and somatic cell score (SCS) were estimated in a cross validation-based design. Accuracy (r) was estimated by the correlation between EBV and corrected phenotype in a validation set. The accuracy (r) of predictions using ssGBLUP increased by 13, 23, 19 and 20 percentage points for MY, FY, PY, and SCS for genotyped animals, compared to PBLUP. The accuracy of non-genotyped animals was not improved for MY and PY, but increased by 0.9 and 3.5 percentage points for FY and SCS. We used the linear regression (LR) method to quantify relative improvements in accuracy, bias (∆), and dispersion (b) of EBV. Using the LR method, the relative improvements in accuracy of validation from PBLUP to ssGBLUP were 43%, 60%, 50%, and 48% for genotyped animals for MY, FY, PY, and SCS. Single-step GBLUP EBV were less underestimated (∆), and less over-dispersed (b) than PBLUP EBV for FY and PY. Pedigree-based BLUP EBV were close to unbiased for MY and SCS. Single-step GBLUP underestimated MY EBV but overestimated SCS EBV. Based on the average accuracy of 0.45 for ssGBLUP EBV obtained in this study, selection intensities according to the breeding scheme of Icelandic Cattle, and assuming a generation interval of 2.0 years for sires of bulls, sires of dams and dams of bulls, genetic gain in Icelandic Cattle could be increased by about 50% relative to the current breeding scheme.

2020 ◽  
Vol 33 (10) ◽  
pp. 1544-1557
Author(s):  
Mi Na Park ◽  
Mahboob Alam ◽  
Sidong Kim ◽  
Byoungho Park ◽  
Seung Hwan Lee ◽  
...  

Objective: Genomic selection (GS) is becoming popular in animals’ genetic development. We, therefore, investigated the single-step genomic best linear unbiased prediction (ssGBLUP) as tool for GS, and compared its efficacy with the traditional pedigree BLUP (pedBLUP) method.Methods: A total of 9,952 males born between 1997 and 2018 under Hanwoo proven-bull selection program was studied. We analyzed body weight at 12 months and carcass weight (kg), backfat thickness, eye muscle area, and marbling score traits. About 7,387 bulls were genotyped using Illumina 50K BeadChip Arrays. Multiple-trait animal model analyses were performed using BLUPF90 software programs. Breeding value accuracy was calculated using two methods: i) Pearson’s correlation of genomic estimated breeding value (GEBV) with EBV of all animals (rM1) and ii) correlation using inverse of coefficient matrix from the mixed-model equations (rM2). Then, we compared these accuracies by overall population, info-type (PHEN, phenotyped-only; GEN, genotyped-only; and PH+GEN, phenotyped and genotyped), and bull-types (YBULL, young male calves; CBULL, young candidate bulls; and PBULL, proven bulls).Results: The rM1 estimates in the study were between 0.90 and 0.96 among five traits. The rM1 estimates varied slightly by population and info-type, but noticeably by bull-type for traits. Generally average rM2 estimates were much smaller than rM1 (pedBLUP, 0.40 to0.44; ssGBLUP, 0.41 to 0.45) at population level. However, rM2 from both BLUP models varied noticeably across info-types and bull-types. The ssGBLUP estimates of rM2 in PHEN, GEN, and PH+ GEN ranged between 0.51 and 0.63, 0.66 and 0.70, and 0.68 and 0.73, respectively. In YBULL, CBULL, and PBULL, the rM2 estimates ranged between 0.54 and 0.57, 0.55 and 0.62, and 0.70 and 0.74, respectively. The pedBLUP based rM2 estimates were also relatively lower than ssGBLUP estimates. At the population level, we found an increase in accuracy by 2.0% to 4.5% among traits. Traits in PHEN were least influenced by ssGBLUP (0% to 2.0%), whereas the highest positive changes were in GEN (8.1% to 10.7%). PH+GEN also showed 6.5% to 8.5% increase in accuracy by ssGBLUP. However, the highest improvements were found in bull-types (YBULL, 21% to 35.7%; CBULL, 3.3% to 9.3%; PBULL, 2.8% to 6.1%).Conclusion: A noticeable improvement by ssGBLUP was observed in this study. Findings of differential responses to ssGBLUP by various bulls could assist in better selection decision making as well. We, therefore, suggest that ssGBLUP could be used for GS in Hanwoo provenbull evaluation program.


2014 ◽  
Vol 59 (No. 9) ◽  
pp. 409-415 ◽  
Author(s):  
J. Přibyl ◽  
J. Bauer ◽  
P. Pešek ◽  
J. Přibylová ◽  
L. Vostrý ◽  
...  

Estimated breeding values and genomic enhanced breeding values for milk production of young genotyped Holstein bulls were predicted using a conventional animal model, ridge regression genomic prediction procedure, genomic best linear unbiased prediction, single-step genomic best linear unbiased prediction, and one-step blending procedures. For prediction, the nation-wide database of domestic Czech production records was combined with deregressed proofs from Interbull files through 2008, which had been transformed by multiple across country evaluation to reflect domestic production conditions. 1259 genotyped bulls had already been proven in 2008. Analyses were run that used Interbull values only for these genotyped bulls and used Interbull values for all available sires. Predictions were validated by comparing correlations of breeding value predictions with estimated breeding values and daughter-yield-deviations after progeny test in 2012 of 140 young genotyped bulls and their associated reliabilities. Combining domestic data with Interbull estimated breeding values improved prediction of both estimated breeding values and genomic enhanced breeding values. Prediction by animal model (traditional estimated breeding values) using only the domestic database had 0.29 validated reliability of prediction; whereas combining the nation-wide domestic database with all available deregressed proofs for genotyped and non-genotyped sires from Interbull resulted in reliability of 0.34, compared to 0.36 when using Interbull data only. The highest reliabilities were for predictions from the single-step genomic best linear unbiased prediction procedure using combined data, or with all available deregressed proofs from Interbull only (one-step blending approach), which reached validated reliabilities for genomic enhanced breeding values predictions 0.53 and 0.54, respectively.  


2021 ◽  
Vol 99 (1) ◽  
Author(s):  
Trine M Villumsen ◽  
Guosheng Su ◽  
Bernt Guldbrandtsen ◽  
Torben Asp ◽  
Mogens S Lund

Abstract Genomic selection relies on single-nucleotide polymorphisms (SNPs), which are often collected using medium-density SNP arrays. In mink, no such array is available; instead, genotyping by sequencing (GBS) can be used to generate marker information. Here, we evaluated the effect of genomic selection for mink using GBS. We compared the estimated breeding values (EBVs) from single-step genomic best linear unbiased prediction (SSGBLUP) models to the EBV from ordinary pedigree-based BLUP models. We analyzed seven size and quality traits from the live grading of brown mink. The phenotype data consisted of ~20,600 records for the seven traits from the mink born between 2013 and 2016. Genotype data included 2,103 mink born between 2010 and 2014, mostly breeding animals. In total, 28,336 SNP markers from 391 scaffolds were available for genomic prediction. The pedigree file included 29,212 mink. The predictive ability was assessed by the correlation (r) between progeny trait deviation (PTD) and EBV, and the regression of PTD on EBV, using 5-fold cross-validation. For each fold, one-fifth of animals born in 2014 formed the validation set. For all traits, the SSGBLUP model resulted in higher accuracies than the BLUP model. The average increase in accuracy was 15% (between 3% for fur clarity and 28% for body weight). For three traits (body weight, silky appearance of the under wool, and guard hair thickness), the difference in r between the two models was significant (P < 0.05). For all traits, the regression slopes of PTD on EBV from SSGBLUP models were closer to 1 than regression slopes from BLUP models, indicating SSGBLUP models resulted in less bias of EBV for selection candidates than the BLUP models. However, the regression coefficients did not differ significantly. In conclusion, the SSGBLUP model is superior to conventional BLUP model in the accurate selection of superior animals, and, thus, it would increase genetic gain in a selective breeding program. In addition, this study shows that GBS data work well in genomic prediction in mink, demonstrating the potential of GBS for genomic selection in livestock species.


2020 ◽  
Vol 98 (6) ◽  
Author(s):  
Andre L S Garcia ◽  
Yutaka Masuda ◽  
Shogo Tsuruta ◽  
Stephen Miller ◽  
Ignacy Misztal ◽  
...  

Abstract Reliable single-nucleotide polymorphisms (SNP) effects from genomic best linear unbiased prediction BLUP (GBLUP) and single-step GBLUP (ssGBLUP) are needed to calculate indirect predictions (IP) for young genotyped animals and animals not included in official evaluations. Obtaining reliable SNP effects and IP requires a minimum number of animals and when a large number of genotyped animals are available, the algorithm for proven and young (APY) may be needed. Thus, the objectives of this study were to evaluate IP with an increasingly larger number of genotyped animals and to determine the minimum number of animals needed to compute reliable SNP effects and IP. Genotypes and phenotypes for birth weight, weaning weight, and postweaning gain were provided by the American Angus Association. The number of animals with phenotypes was more than 3.8 million. Genotyped animals were assigned to three cumulative year-classes: born until 2013 (N = 114,937), born until 2014 (N = 183,847), and born until 2015 (N = 280,506). A three-trait model was fitted using the APY algorithm with 19,021 core animals under two scenarios: 1) core 2013 (random sample of animals born until 2013) used for all year-classes and 2) core 2014 (random sample of animals born until 2014) used for year-class 2014 and core 2015 (random sample of animals born until 2015) used for year-class 2015. GBLUP used phenotypes from genotyped animals only, whereas ssGBLUP used all available phenotypes. SNP effects were predicted using genomic estimated breeding values (GEBV) from either all genotyped animals or only core animals. The correlations between GEBV from GBLUP and IP obtained using SNP effects from core 2013 were ≥0.99 for animals born in 2013 but as low as 0.07 for animals born in 2014 and 2015. Conversely, the correlations between GEBV from ssGBLUP and IP were ≥0.99 for animals born in all years. IP predictive abilities computed with GEBV from ssGBLUP and SNP predictions based on only core animals were as high as those based on all genotyped animals. The correlations between GEBV and IP from ssGBLUP were ≥0.76, ≥0.90, and ≥0.98 when SNP effects were computed using 2k, 5k, and 15k core animals. Suitable IP based on GEBV from GBLUP can be obtained when SNP predictions are based on an appropriate number of core animals, but a considerable decline in IP accuracy can occur in subsequent years. Conversely, IP from ssGBLUP based on large numbers of phenotypes from non-genotyped animals have persistent accuracy over time.


2018 ◽  
Vol 135 (4) ◽  
pp. 251-262 ◽  
Author(s):  
Jeremy T. Howard ◽  
Tom A. Rathje ◽  
Caitlyn E. Bruns ◽  
Danielle F. Wilson-Wells ◽  
Stephen D. Kachman ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 569
Author(s):  
Chen Wei ◽  
Hanpeng Luo ◽  
Bingru Zhao ◽  
Kechuan Tian ◽  
Xixia Huang ◽  
...  

Genomic evaluations are a method for improving the accuracy of breeding value estimation. This study aimed to compare estimates of genetic parameters and the accuracy of breeding values for wool traits in Merino sheep between pedigree-based best linear unbiased prediction (PBLUP) and single-step genomic best linear unbiased prediction (ssGBLUP) using Bayesian inference. Data were collected from 28,391 yearlings of Chinese Merino sheep (classified in 1992–2018) at the Xinjiang Gonaisi Fine Wool Sheep-Breeding Farm, China. Subjectively-assessed wool traits, namely, spinning count (SC), crimp definition (CRIM), oil (OIL), and body size (BS), and objectively-measured traits, namely, fleece length (FL), greasy fleece weight (GFW), mean fiber diameter (MFD), crimp number (CN), and body weight pre-shearing (BWPS), were analyzed. The estimates of heritability for wool traits were low to moderate. The largest h2 values were observed for FL (0.277) and MFD (0.290) with ssGBLUP. The heritabilities estimated for wool traits with ssGBLUP were slightly higher than those obtained with PBLUP. The accuracies of breeding values were low to moderate, ranging from 0.362 to 0.573 for the whole population and from 0.318 to 0.676 for the genotyped subpopulation. The correlation between the estimated breeding values (EBVs) and genomic EBVs (GEBVs) ranged from 0.717 to 0.862 for the whole population, and the relative increase in accuracy when comparing EBVs with GEBVs ranged from 0.372% to 7.486% for these traits. However, in the genotyped population, the rank correlation between the estimates obtained with PBLUP and ssGBLUP was reduced to 0.525 to 0.769, with increases in average accuracy of 3.016% to 11.736% for the GEBVs in relation to the EBVs. Thus, genomic information could allow us to more accurately estimate the relationships between animals and improve estimates of heritability and the accuracy of breeding values by ssGBLUP.


Sign in / Sign up

Export Citation Format

Share Document