scholarly journals 219 Developing country specific enteric methane emission factor of the South Korean dairy cattle production using the 2019 refined IPCC Tier 2 methodology

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 157-157
Author(s):  
Tae Hoon Kim ◽  
Ridha Ibidhi ◽  
Yoo-Gyung Lee ◽  
Hyun.June Lee ◽  
Kyoung Hoon Kim

Abstract Dairy cattle farming was identified as an important source of enteric methane (CH4) emissions. In order to contribute to the improvement of the national greenhouse gas emission inventory, this work aims to develop emission factors (EF) for CH4 emissions from enteric fermentation in dairy cattle in South Korea. Information on dairy cattle herd characteristics, diet and management practices specific to the Korean dairy cattle population were gathered. EF was estimated according to the 2019 refinement to the 2006 Intergovernmental Panel on Climate Change (IPCC) using the Tier 2 approach. Three animal subcategories were considered: milking cows (650 kg body weight, BW), heifers 1~2 years (473 kg BW) and growing animals < 1 year (167 kg BW). The estimated enteric CH4 EFs for milking cows, heifers 1~2 years, growing animal < 1 year, were 139, 83 and 33 kg/head/year, respectively. South Korea adopted the Tier 1 default enteric CH4 EFs for GHG inventory reporting from the North America region. Compared with the generic Tier 1 default EF of 138 kg CH4/head/year proposed by the 2019 refinement to the 2006 IPCC guidelines for high milking cows, our suggested value is quite similar (139 kg CH4/ head/year). While enteric CH4 EFs values were 23% higher and 49% lower for heifers and growing animals < one year than Tier 1 default EFs values, respectively. In addition, enteric CH4 EF is highly correlated with the level of milk production, feed intake and digestibility and methane conversion factor (%Ym). The outcome of this study underscores the importance of obtaining country-specific EF to estimate national enteric CH4 emissions. Thus, this work is a step forward in the revision of dairy cattle enteric CH4 EF and can further support assessment of mitigation strategies in South Korean livestock farming systems.

2021 ◽  
Vol 13 (16) ◽  
pp. 9133
Author(s):  
Ridha Ibidhi ◽  
Tae-Hoon Kim ◽  
Rajaraman Bharanidharan ◽  
Hyun-June Lee ◽  
Yoo-Kyung Lee ◽  
...  

Dairy cattle farming contributes significantly to greenhouse gas (GHG) emissions through methane (CH4) from enteric fermentation. To complement global efforts to mitigate climate change, there is a need for accurate estimations of GHG emissions using country-specific emission factors (EFs). The objective of this study was to develop national EFs for the estimation of CH4 emissions from enteric fermentation in South Korean dairy cattle. Information on dairy cattle herd characteristics, diet, and management practices specific to South Korean dairy cattle farming was obtained. Enteric CH4 EFs were estimated according to the 2019 refinement of the 2006 Intergovernmental Panel on Climate Change (IPCC) using the Tier 2 approach. Three animal subcategories were considered according to age: milking cows >2 years, 650 kg body weight (BW); heifers 1–2 years, 473 kg BW; and growing animals <1 year, 167 kg BW. The estimated enteric CH4 EFs for milking cows, heifers, and growing animals, were 139, 83, and 33 kg/head/year, respectively. Currently, the Republic of Korea adopts the Tier 1 default enteric CH4 EFs from the North America region for GHG inventory reporting. Compared with the generic Tier 1 default EF of 138 (kg CH4/head/year) proposed by the 2019 refinement to the 2006 IPCC guidelines for high-milking cows, our suggested value for milking cows was very similar (139 kg CH4 /head/year) and different to heifers and growing animals EFs. In addition, enteric CH4 EFs were strongly correlated with the feed digestibility, level of milk production, and CH4 conversion rate. The adoption of the newly developed EFs for dairy cattle in the next national GHG inventory would lead to a potential total GHG reduction from the South Korean dairy sector of 97,000 tons of carbon dioxide-equivalent per year (8%). The outcome of this study underscores the importance of obtaining country-specific EFs to estimate national enteric CH4 emissions, which can further support the assessment of mitigation actions.


2007 ◽  
Vol 87 (3) ◽  
pp. 459-467 ◽  
Author(s):  
K. H. Ominski ◽  
D. A. Boadi ◽  
K. M. Wittenberg ◽  
D. L. Fulawka ◽  
J. A. Basarab

The objective of this study was to estimate enteric methane (CH4) emissions of the Canadian cattle population using the International Panel on Climate Change (IPCC) Tier-2 methodology. Estimates were then compared with IPCC Tier-1 methodology and data from Canadian research studies (CRS). Animal inventory data for the Canadian beef and dairy cattle herd was obtained from Statistics Canada. Information on cattle performance and feeding practices were obtained from provincial cattle specialists via a survey, as well as various published reports. Methane emissions from dairy and beef cattle in Canada for 2001 were 173 030 t yr-1 or 3.6 Mt CO2 eq. and 763 852 t yr-1 or 16.0 Mt CO2 eq., respectively, using Tier-2 methodology. Emissions for dairy cattle ranged from 708 t yr-1 in Newfoundland to 62 184 t yr-1 in Ontario. Emissions for beef cattle ranged from 191 t yr-1 in Newfoundland to 356 345 t yr-1 in Alberta. The national emission factors (kg CH4 yr-1) using IPCC Tier-2 were 73, 126, 90, 94, 40, 75, 63 and 56 for dairy heifers, dairy cows, beef cows, bulls, calves < 1yr, beef heifer replacements, heifers > 1 yr, and steers > 1yr, respectively. Emission factors (kg CH4 yr-1) for the above classes of cattle using IPCC Tier-1 were 56, 118, 72, 75, 47, 56, 47 and 47, respectively. The values were 15.1% higher to 25.3% lower than those obtained using IPCC Tier-2 methodology. When IPCC Tier-2 emission factors were compared with CRS, they were 12.3% lower to 32.6% higher than those obtained using the Tier-2 methodology. In conclusion, national estimates of enteric emissions from the Canadian cattle industry using Tier-1 and Tier-2 methodologies, as well as CRS, differ depending on the methodology used. Tier-2 methodology does allow for the inclusion of information other than population data, including feeding strategies, as well as duration of time in a given production environment. Additional research is required to establish the extent to which feed energy is converted to methane for those production scenarios for which there is no published data. Key words: IPCC Tier-2, IPCC Tier-1, enteric fermentation, cattle, methane, emission factor, methane conversion rate


2016 ◽  
Vol 21 (2) ◽  
pp. 101 ◽  
Author(s):  
Yeni Widiawati ◽  
M.N. Rofiq ◽  
B. Tiesnamurti

<p class="abstrak2">Methane emission from enteric is a sub-category considered under the Agriculture sector greenhouse gas emissions by UNFCCC, thus Indonesia developed calculation on enteric CH<sub>4</sub> EF for ruminant using Tier-2 method as country-specific emission factors (EF). Indonesia has huge amount of beef cattle population, which contributes significant amount to national enteric methane emission. The aim of this study was to estimate enteric methane EF for beef cattle in Indonesia using IPCC Tier-2 method.  The EF generated from this study is then used to estimate the methane emitted from beef cattle. Data on beef cattle population was obtained from BPS, data on energy content of feed, feed intake and digestibility were compiled from laboratory analysis and published paper. Equations were adopted and followed the instruction of IPCC 2006. Local cattle has different CH<sub>4</sub> EF among each sub-category, which are  ranging from 18.18 to 55.89 Kg head-1 yr-1, with the average of 36.75  head-1 yr-1. Imported beef cattle has lower  CH<sub>4</sub> EF (25.49 kg head-1 yr-1) than the average for local beef cattle. Overall, the national CH<sub>4</sub> EF of beef cattle calculated by using IPCC Tier-2 method in Indonesia is 33.14 head-1 yr-1. The value is lower than default EF from IPCC for Asia country (47 kg head-1 yr-1). The conclusion is enteric CH<sub>4</sub> EF for beef cattle in Indonesia calculated using Tier-2 method shows the real livestock system in Indonesia condition. Further research needed to be addressed are calculation of EFs for various breeds and feeding systems, since large variations of breeds and types of feed among provinces in Indonesia.</p>


2019 ◽  
Vol 11 (14) ◽  
pp. 3858
Author(s):  
Yixuan Guo ◽  
Yidong Wang ◽  
Shufeng Chen ◽  
Shunan Zheng ◽  
Changcheng Guo ◽  
...  

Livestock and poultry farming sectors are among the largest anthropogenic methane (CH4) emission sources, mainly from enteric fermentation and manure management. Previous inventories of CH4 emission were generally based on constant emission factor (EF) per head, which had some weaknesses mainly due to the succession of breeding and feeding systems over decades. Here, more reliable long-term changes of CH4 emissions from livestock and poultry farming in Beijing are estimated using the dynamic EFs based on the Intergovernmental Panel on Climate Change (IPCC) Tier 2 method, and high-resolution spatial patterns of CH4 emissions are also estimated with intensive field survey. The results showed that the estimated CH4 emissions derived by dynamic EFs were approximately 13–19% lower than those based on the constant EF before 2010. After 2011, however, the dynamic EFs-derived CH4 emissions were a little higher (3%) than the constant EF method. Temporal CH4 emissions in Beijing had experienced four developing stages (1978–1988: stable; 1989–1998: slow growth; 1999–2004: rapid growth and reached hot moments; 2005–2014: decline) during 1978–2014. Over the first two decades, the contributions of pigs (45%) and cattle (46%) to annual CH4 emission were similar; subsequently, the cattle emitted more CH4 compared to the pigs. At a spatial scale, Shunyi, Daxing, and Tongzhou districts with more cattle and pigs are the hotspots of CH4 emission. In conclusion, the dynamic EFs method obviously improved the spatio-temporal estimates of CH4 emissions compared to the constant EF approach, and the improvements depended on the period and aquaculture structure. Therefore, the dynamic EFs method should be recommended for estimating CH4 emissions from livestock and poultry farming in the future.


2015 ◽  
Author(s):  
Namchul Jo ◽  
Jongnam Kim ◽  
Seongwon Seo

Enteric methane (CH4) production by cattle is one of the major sources of greenhouse gas (GHG) emissions in the livestock sector. In order to develop a national GHG inventory and establish a mitigation strategy for GHG emissions from livestock production, accurate estimation of enteric CH4 production by cattle is required. In this regard, the Tier 2 method in the Intergovernmental Panel on Climate Change (IPCC) guidelines is the most widely used. The objective of this study was to estimate and evaluate the CH4 emission factor (MEF; kg CH4/head/year) for enteric fermentation using the IPCC Tier 2 method in Hanwoo steers, a dominant beef production species in Korea raised in a unique feeding system (e.g., a duration of > 16 months in a feedlot). Methane emission factor for enteric fermentation was estimated using the IPCC Tier 2 method (T2) on Korea- and Hanwoo-specific data obtained from the literature. The MEF values were also estimated and compared using the IPCC Tier 1 (T1), the IPCC Tier 2 methodology with estimated gross energy GE intake based on actual dry matter intake (T2DMI), and the Japanese Tier 3 method (JT3). JT3 was chosen due to the similarity in the beef cattle production system between the two countries. Estimated MEF using T2 were 43.4, 33.9, and 36.2 kg CH4/head/year for the growing, finishing, and overall period, respectively. The overall MEF estimated using T2 was 23% lower than the estimate by T1 (47.0 kg CH4/head/year). There were significant differences in the estimated MEF for enteric fermentation of Hanwoo steers among the T2, T2DMI, and JT3 methods. JT3 estimated the highest values in all periods possibly due to overestimation of the conversion ratio of feed energy to CH4. No significant difference was found in the overall MEF of Hanwoo steers between T2 and T2DMI. However, T2DMI estimated 8% higher and 14% lower MEF than T2 for the growing and finishing period, respectively, mainly because the IPCC Tier 2 model significantly over-predicts the GE intake of Hanwoo steers at the high level of intake. The IPCC Tier 2 methodology is preferred to IPCC Tier 1 in estimating the MEF for enteric fermentation of Hanwoo steers, and the DMI model for Japanese cattle can be used to predict DMI of Hanwoo steers. In order to reduce the uncertainty of the estimates and search for a better mitigation strategy, however, development of a country-specific methodology and parameter estimates for enteric CH4 production of Hanwoo is required.


2021 ◽  
Author(s):  
Showman Gwatibaya ◽  
Chrispen Murungweni ◽  
Irvine Mpofu ◽  
Raphael Jingura ◽  
Accadius Tinarwo Tigere ◽  
...  

Abstract The effectiveness of methane mitigation in ruminant livestock production systems depends on the accuracy of estimating methane emission factors and providing accurate emission inventories. Following the Paris Climate agreement, it is recommended that countries adopt the Tier-2 approach for estimating enteric methane emissions from ruminants instead of the Tier-1 approach currently used by most countries. This study sought to provide base line enteric methane emission estimates for the Tuli and Mashona Sanga cattle breeds in Zimbabwe using the IPCC Tier-2 model. Using animal characterization data collected from 412 cattle from Grasslands Research Institute and 406 cattle from Makoholi Research Institute, net energy requirements were estimated. From this and the estimate for digestibility, gross energy intake and dry matter intake were estimated. Gross energy intakes and the estimated methane conversion factor were used to estimate enteric methane emissions. Mean emission factors for Tuli were 45.1, 56, 28.5, 28.4, 20.6kg CH4/head/year for cows, bulls, heifers, steers and calves respectively. For Mashona, they were 47.8, 51.9, 29, 29.1 and 20.7kgCH4/head/year for cows, bulls, heifers, steers and calves respectively. Generally, estimated Tier-2 emission factors were significantly different from the IPCC Tier-1 default emission factors. This study concluded that enteric methane emission factors estimated using the IPCC Tier-2 model offer insights into the controversial use of the default IPCC Tier-1 emission factors.


2015 ◽  
Author(s):  
Namchul Jo ◽  
Jongnam Kim ◽  
Seongwon Seo

Enteric methane (CH4) production by cattle is one of the major sources of greenhouse gas (GHG) emissions in the livestock sector. In order to develop a national GHG inventory and establish a mitigation strategy for GHG emissions from livestock production, accurate estimation of enteric CH4 production by cattle is required. In this regard, the Tier 2 method in the Intergovernmental Panel on Climate Change (IPCC) guidelines is the most widely used. The objective of this study was to estimate and evaluate the CH4 emission factor (MEF; kg CH4/head/year) for enteric fermentation using the IPCC Tier 2 method in Hanwoo steers, a dominant beef production species in Korea raised in a unique feeding system (e.g., a duration of > 16 months in a feedlot). Methane emission factor for enteric fermentation was estimated using the IPCC Tier 2 method (T2) on Korea- and Hanwoo-specific data obtained from the literature. The MEF values were also estimated and compared using the IPCC Tier 1 (T1), the IPCC Tier 2 methodology with estimated gross energy GE intake based on actual dry matter intake (T2DMI), and the Japanese Tier 3 method (JT3). JT3 was chosen due to the similarity in the beef cattle production system between the two countries. Estimated MEF using T2 were 43.4, 33.9, and 36.2 kg CH4/head/year for the growing, finishing, and overall period, respectively. The overall MEF estimated using T2 was 23% lower than the estimate by T1 (47.0 kg CH4/head/year). There were significant differences in the estimated MEF for enteric fermentation of Hanwoo steers among the T2, T2DMI, and JT3 methods. JT3 estimated the highest values in all periods possibly due to overestimation of the conversion ratio of feed energy to CH4. No significant difference was found in the overall MEF of Hanwoo steers between T2 and T2DMI. However, T2DMI estimated 8% higher and 14% lower MEF than T2 for the growing and finishing period, respectively, mainly because the IPCC Tier 2 model significantly over-predicts the GE intake of Hanwoo steers at the high level of intake. The IPCC Tier 2 methodology is preferred to IPCC Tier 1 in estimating the MEF for enteric fermentation of Hanwoo steers, and the DMI model for Japanese cattle can be used to predict DMI of Hanwoo steers. In order to reduce the uncertainty of the estimates and search for a better mitigation strategy, however, development of a country-specific methodology and parameter estimates for enteric CH4 production of Hanwoo is required.


Sign in / Sign up

Export Citation Format

Share Document