scholarly journals 407 Effects of calcium-ammonium nitrate on in vitro ruminal fermentation using a wheat forage based substrate

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 165-166
Author(s):  
Andrea O Doblado ◽  
Sebastian E Mejia-Turcios ◽  
Nadira J Espinoza-Rock ◽  
Evandro Dias ◽  
Michael Sandes ◽  
...  

Abstract A randomized complete block design was used to evaluate in vitro ruminal total gas and methane production, N-NH3 concentration, and digestibility of wheat forage when incubated with calcium-ammonium nitrate (CAN). The in vitro fermentation consisted of 50 mL of a 4:1 buffer:ruminal fluid inoculum and 0.7 g of substrate [DM; wheat (Triticum aestivum; 100%) or wheat:corn (88:12)] incubated for 48 h. Batches were incubated on 4 separate days. Treatments included: 1) wheat (W); 2) wheat + corn (WC); 3) WC + 2% CAN in the substrate DM (WCN); and 4) WC + 0.67% UREA in the substrate DM (WCU). Treatments WCN and WCU were isonitrogenous. In vitro organic matter digestibility (IVOMD) was determined after incubation for 48 h with inoculum, followed by a 48 h incubation with HCl and pepsin solutions. Data were analyzed using the MIXED procedure of SAS with the fixed effect of treatment and random effect of day (block). Batch was considered the experimental unit. Total gas production was reduced by WCN compared with WCU (P = 0.049) and WC (P = 0.001). The addition of corn without NPN increased (P = 0.004) total gas production compared to wheat. An increased (P = 0.009) IVOMD was observed for WC compared to W, while no differences (P = 0.416) were observed between WCN and WCU. Ammonia-N concentration was not different (P = 0.463) between WCN and WCU; and the inclusion of NPN increased (P ≤ 0.026) NH3-N concentration compared to W. Methane production (mmol/g OM fermented) was lesser (P < 0.001) for WCN compared to WCU. Total VFA concentration and acetate:propionate were not affected by treatment (P > 0.05). Therefore, CAN can potentially be used as a NPN source with the additional benefit of in vitro methane mitigation without negatively affecting IVOMD or total VFA concentration.

2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 27-28
Author(s):  
Andrea M Osorio ◽  
Kenneth Madrid ◽  
Sergio Buitrago ◽  
Nicolas DiLorenzo ◽  
Francine M Ciriaco ◽  
...  

Abstract A randomized complete block design was used to evaluate in vitro total gas production (TGP), methane production, concentration of NH3-N, and digestibility of mixed winter forage (CP 10.2% and NDF 58.6%) incubated with calcium-ammonium nitrate (CAN). In vitro fermentation consisted of 50 mL of a 4:1 buffer:ruminal fluid inoculum and 0.7 g of substrate [DM; wheat, triticale, and rye (Triticum aestivum, Triticosecale rimpaui, and Secale cereal; FOR) or forage:corn (90:10; CORN)] incubated for 48 h. Treatments included: 1) FOR; 2) CORN; 3) CORN + 2% CAN (DM; NIT); and 4) CORN + 0.67% UREA (DM; UREA). Treatments NIT and UREA were isonitrogenous. In vitro organic matter digestibility (IVOMD) was determined after incubation for 48 h, followed by a 48-h incubation with HCl and pepsin solutions. Data were analyzed using the MIXED procedure of SAS with the fixed effect of treatment and random effect of day (block). There was a treatment effect (P = 0.024) on TGP where NIT decreased TGP compared with CORN (P = 0.023), and NIT was not different from UREA. A greater IVOMD (P = 0.017) was observed for CORN compared with FOR. No differences were observed in IVOMD between UREA and NIT. There were no differences (P = 0.727) among all treatments for concentration of NH3-N. Total methane production was lesser for NIT (P ≤ 0.018) compared with all other treatments. There was a treatment effect for molar proportion of acetate (P = 0.039) and acetate:propionate (P = 0.034) where NIT tended (P = 0.058) to have a greater molar proportion of acetate compared to UREA. Total VFA concentration was not affected by treatment (P = 0.454). Calcium-ammonium nitrate influenced in vitro ruminal fermentation of a mature mixed winter forage, decreasing methane production without negatively affecting IVOMD or concentration of VFA.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 165-165
Author(s):  
Nadira J Espinoza-Rock ◽  
Andrea O Doblado ◽  
Sebastian E Mejia-Turcios ◽  
Evandro Dias ◽  
Michael Sandes ◽  
...  

Abstract A randomized complete block design was used to determine the effects of 4 concentrations of 4 essential oils (EO) on in vitro ruminal fermentation variables. In vitro fermentation consisted of 0.7 g of high concentrate substrate (86.7% DM) and 50 mL of 2:1 buffer:ruminal fluid inoculum incubated for 24 h for each batch (n = 3; separate days) Treatments were arranged as a 4 × 5 factorial. Factors included 4 EO (eugenol, cinnamic aldehyde, anethole, and garlic oil) at 5 concentrations (0, 10, 75, 200, and 400 mg/L of inoculum). Data were analyzed using the MIXED procedure of SAS with the fixed effects of EO, concentration, and their interaction, and random effect of day (block). Batch was considered the experimental unit. There was an interaction (P < 0.001) for total gas production, where a cubic effect (P ≤ 0.041) was observed for eugenol, cinnamic aldehyde, and anethole, and a quadratic effect (P = 0.001) was observed for garlic oil. No interactions (P > 0.05) were observed for in vitro OM digestibility (IVOMD) or CH4 production. There was an effect of EO (P < 0.001) on IVOMD, where eugenol reduced (P ≤ 0.007) digestibility compared with anethole and garlic oil, which promoted the greatest (P ≤ 0.029) IVOMD. Methane production (mmol/g OM fermented) was affected by EO (P < 0.001), where it was decreased (P ≤ 0.001) by garlic oil compared with all other EO. There was an interaction (P < 0.001) for H2S production (µmol/g OM fermented), where it was linearly decreased (P = 0.003) and linearly increased (P < 0.001) as concentrations of eugenol and garlic oil increased, respectively. These EO had contradictory impacts on in vitro ruminal fermentation, thus combining them could potentially improve multiple aspects of in vitro and in vivo fermentation.


2019 ◽  
Vol 97 (Supplement_1) ◽  
pp. 35-36
Author(s):  
Sebastian E Mejia-Turcios ◽  
Miranda K Stotz ◽  
Andrea M Osorio ◽  
Philip M Urso ◽  
Thomas G Jennings ◽  
...  

Abstract An experiment was performed to determine the effects of bismuth subsalicylate (BSS) and calcium-ammonium nitrate (CAN) on in vitro fermentation of a high-concentrate (87% concentrate, DM basis) substrate. Serum bottles containing 20 mL of a 2:1 buffer:ruminal fluid inoculum and 0.2 g of substrate were incubated for 24 h. Four ruminally cannulated steers (BW = 520 ± 30 kg) were used as ruminal fluid donors and each donor was considered a block. Treatments were arranged in a 2 × 2 factorial with the following factors: BSS (0 or 0.33%, DM basis) and CAN (0 or 2.22%, DM basis). Treatments were made isonitrogenous with urea. In vitro organic matter digestibility (IVOMD) was determined in separate 100-mL centrifuge tubes. Data were analyzed using the MIXED procedure of SAS with the fixed effect of BSS, CAN, BSS × CAN, and the random effect of donor. An interaction (P < 0.01) was observed for total gas production (TGP). When CAN was included, without BSS, TGP was increased (P < 0.01); however, the combination of CAN with BSS did not affect (P = 0.85) TGP when compared to the combination of urea and BSS. Ammonia-N tended (P = 0.10) to increase when CAN was used as N source rather than urea. In vitro OM digestibility (P > 0.23) and final pH (P > 0.66) of in vitro ruminal fermentation were not affected by treatments. A tendency (P = 0.06) for an interaction regarding the production of H2S was observed; however, there were no treatment mean differences (P > 0.28). The combination of CAN and BSS did not negatively affect in vitro fermentation parameters such as OM digestion and gas production; however, a reduction in H2S with the combination of BSS and CAN may indicate potential benefits of such feeding strategies for feedlot cattle.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 166-166
Author(s):  
Kenneth S Madrid ◽  
Andrea M Osorio ◽  
Francine M Ciriaco ◽  
Kymberly D Coello ◽  
Angel A Raudales ◽  
...  

Abstract A randomized complete block design was used to evaluate the effects of bismuth subsalicylate (BSS) on in vitro ruminal fermentation with differing concentrations of sulfate. In vitro fermentation consisted of 50 mL of a 4:1 buffer:ruminal fluid inoculum and 0.7 g (pre-dehydrated) of substrate [WW-B Dahl bluestem hay (Bothriochloa bladhii)] incubated for 48 h (39oC). Treatments were arranged as a 3 × 4 factorial with concentration of sulfate (0.2, 2.9, or 5.6 g sulfate/L buffer) and BSS (0.0, 0.165, 0.330, or 0.495% substrate DM) as the main factors. In vitro organic matter digestibility (IVOMD), and CH4, H2S, and total gas production (TGP) were measured. Data were analyzed using the MIXED procedure of SAS with the fixed effects of BSS, sulfate, and their interaction. Incubation day (block) was considered a random effect. The average of 2 bottles within day was considered experimental unit. A BSS × sulfate interaction was observed for TGP (P = 0.040) and H2S production (P &lt; 0.001), where BSS had a larger negative impact on TGP and production of H2S with greater concentrations of sulfate. A linear effect (P &lt; 0.001) of sulfate was observed for CH4 production per gram of incubated OM, where CH4 was decreased as sulfate concentration increased. A quadratic effect of sulfate was observed for IVOMD (P = 0.010) and pH (P = 0.009). Production of H2S linearly decreased (P = 0.001) as BSS concentration increased. The addition of BSS to in vitro incubations did not affect (P &gt; 0.10) any other variables measured. Bismuth subsalicylate does not appear to have negative effects on in vitro fermentation parameters while decreasing H2S production; however, elevated concentrations of sulfate in the buffer appears to have negative impacts on fermentation. Further in vivo research is warranted to support BSS supplementation to cattle with high dietary sulfate.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 166-167
Author(s):  
Andrea M Osorio Doblado ◽  
Sebastian E Mejia-Turcios ◽  
Miranda K Stotz ◽  
David Vargas ◽  
Rafael Canonenco de Araujo ◽  
...  

Abstract The effects of encapsulated calcium-ammonium nitrate (eCAN) on in vivo methane production and performance were evaluated. A generalized randomized block design was used with beef steers grazing a mixed winter forage (Triticum aestivum, Triticosecale rimpaui, and Secale cereale) for 49 d. Thirty-six Angus-crossbred steers (332 ± 53 kg) were blocked by BW and randomly assigned to 1 of 3 treatments: 1) winter pasture + corn (WC), 2) WC + 328 mg/kg of BW eCAN (WCN) and 3) WC + 124 mg/kg of BW UREA (WCU), all supplemented with corn (0.3% BW treatments). Treatments WCN and WCU were isonitrogenous. A 14d adaptation period was used to adapt cattle to treatments. Methane emissions were measured using the sulfur hexafluoride tracer technique. Blood samples and BW were taken at d 0, 24, 35, and 49. Supplemental corn and NPN orts were collected daily. Data were analyzed using the MIXED procedure of SAS with the fixed effect of treatment and random effect of pasture (block); BUN, supplement intake and CP intake were analyzed with repeated measures. Steer was considered the experimental unit. Methane production was not different (P &gt; 0.05) considering g/d, g/kg of BW, g/kg of MBW, or g/kg of ADG. Treatments did not affect ADG (P = 0.941). Supplement intake was affected by treatment (P &lt; 0.001), with WC (0.979 kg) being greater compared to WCU (0.887 kg) and WCN (0.706 kg). Total CP intake increased (P &lt; 0.001) with WCU (0.155 kg) and WCN (0.116 kg), compared to WC (0.074 kg), which did not have a non-protein source. Blood urea nitrogen was affected by day, with d 24 (18.598 mg/dL) being greater compared to d 0 (8.215 mg/dL), 35 (10.549 mg/dL) and 49 (14.5744 mg/dL). The eCAN did not effectively replace urea as a NPN source to mitigate enteric methane.


2019 ◽  
Vol 97 (Supplement_1) ◽  
pp. 11-12
Author(s):  
Sebastian E Mejia-Turcios ◽  
Miranda K Stotz ◽  
Andrea M Osorio ◽  
Philip M Urso ◽  
Thomas G Jennings ◽  
...  

Abstract An experiment was performed to determine the effects of bismuth subsalicylate (BSS) and calcium-ammonium nitrate (CAN) on in vitro fermentation of a high-concentrate (87% concentrate, DM basis) substrate. Serum bottles containing 20 mL of a 2:1 buffer:ruminal fluid inoculum and 0.2 g of substrate were incubated for 24 h. Four ruminally cannulated steers (BW = 520 ± 30 kg) were used as ruminal fluid donors and each donor was considered a block. Treatments were arranged in a 2 × 2 factorial with the following factors: BSS (0 or 0.33%, DM basis) and CAN (0 or 2.22%, DM basis). Treatments were made isonitrogenous with urea. In vitro organic matter digestibility (IVOMD) was determined in separate 100-mL centrifuge tubes. Data were analyzed using the MIXED procedure of SAS with the fixed effect of BSS, CAN, BSS × CAN, and the random effect of donor. An interaction (P < 0.01) was observed for total gas production (TGP). When CAN was included, without BSS, TGP was increased (P < 0.01); however, the combination of CAN with BSS did not affect (P = 0.85) TGP when compared to the combination of urea and BSS. Ammonia-N tended (P = 0.10) to increase when CAN was used as N source rather than urea. In vitro OM digestibility (P > 0.23) and final pH (P > 0.66) of in vitro ruminal fermentation were not affected by treatments. A tendency (P = 0.06) for an interaction regarding the production of H2S was observed; however, there were no treatment mean differences (P > 0.28). The combination of CAN and BSS did not negatively affect in vitro fermentation parameters such as OM digestion and gas production; however, a reduction in H2S with the combination of BSS and CAN may indicate potential benefits of such feeding strategies for feedlot cattle


2019 ◽  
Vol 97 (Supplement_1) ◽  
pp. 62-63
Author(s):  
Miranda K Stotz ◽  
Sebastian E Mejia-Turcios ◽  
Andrea M Osorio ◽  
Nadira Espinoza ◽  
Philip M Urso ◽  
...  

Abstract Heat stress (HS) has been indicated to increase ruminal temperature, increase digestibility, and reduce ruminal pH of steers fed high concentrate diets. However, it is unclear if this effect is the result of greater fermentation rate, slower passage rate, or a combination. The effect of ruminal incubation temperature on substrate digestibility and rate of fermentation were evaluated. Four cannulated British-crossbreed steers (BW = 520 kg ± 30 kg) consuming an 87% (DM) concentrate diet were utilized as rumen fluid donors in a randomized complete block design with two incubation treatments (CON=39°C and HS=42°C). Within block, duplicate 125 mL serum bottles containing 200 mg of dietary substrate were inoculated with a 2:1 buffer:ruminal fluid mixture and incubated for 24 h to measure total gas production, fermentation rate, fermentation lag, pH, and ammonia-N concentration. In vitro organic matter digestibility (IVOMD) was measured separately in 100 mL centrifuge tubes. Data were analyzed using the MIXED procedure of SAS using the fixed effect of treatment and random effect of rumen fluid donor (block). There was no treatment effect on total gas production (P = 0.92) or fermentation rate (P = 0.11); however, HS began fermenting substrate sooner than CON (P < 0.005). There was a significant effect of treatment on IVOMD where HS was greater compared to CON (79.3 vs. 70.4%; P = 0.05). Final pH and relative pH change were not different (P ≥ 0.25) likely due to buffering capacity of the in vitro technique Ammonia-N concentration was greater for HS than CON (7.92 vs. 5.33 mM; P < 0.05) and may indicate a temperature effect on ruminal nitrogen availability.In conclusion, it does not appear that incubating at a greater temperature affected the fermentation rate but likely induced a change in fermentation kinetics, which may have contributed to the greater overall IVOMD


Author(s):  
Sebastian E Mejia-Turcios ◽  
Andrea M Osorio ◽  
Francine M Ciriaco ◽  
Phil M Urso ◽  
Rafael C Araujo ◽  
...  

Abstract Two experiments were performed to evaluate the effects of bismuth subsalicylate (BSS) and calcium-ammonium nitrate (CAN) on in vitro ruminal fermentation, growth, apparent total tract digestibility of nutrients, liver mineral concentration, and carcass quality of beef cattle. In Exp. 1, 4 ruminally cannulated steers [520 ± 30 kg body weight (BW)] were used as donors to perform a batch culture and an in vitro organic matter digestibility (IVOMD) procedure. Treatments were arranged in a 2 × 2 factorial with factors being BSS [0 or 0.33% of substrate dry matter (DM)] and CAN (0 or 2.22% of substrate DM). In Exp. 2, 200 Angus-crossbred steers (385 ± 27 kg BW) were blocked by BW and allocated to 50 pens (4 steers/pen) in a randomized complete block design with a 2 × 2 + 1 factorial arrangement of treatments. Factors included BSS (0 or 0.33% of the diet DM) and non-protein nitrogen (NPN) source [urea or encapsulated CAN (eCAN) included at 0.68 or 2.0% of the diet, respectively] with 0.28% ruminally available S (RAS). A low S diet was included as a positive control containing urea (0.68% of DM) and 0.14% RAS. For Exp. 1, data were analyzed using the MIXED procedure of SAS with the fixed effects of BSS, CAN, BSS × CAN, and the random effect of donor. For Exp. 2, the MIXED procedure of SAS was used for continuous variables and the GLIMMIX procedure for categorical data. For Exp. 1, no differences (P &gt; 0.230) were observed for IVOMD. There was a tendency (P = 0.055) for an interaction regarding H2S production. Acetate:propionate increased (P = 0.003) with the addition of CAN. In Exp. 2, there was a NPN source effect (P = 0.032) where steers consuming urea had greater carcass-adjusted final shrunk BW than those consuming eCAN. Intake of DM (P &lt; 0.001) and carcass-adjusted average daily gain (P = 0.024) were reduced by eCAN; however, it did not affect (P = 0.650) carcass-adjusted feed efficiency. Steers consuming urea had greater (P = 0.032) hot carcass weight, and a BSS × NPN interaction (P = 0.019) was observed on calculated yield grade. Apparent absorption of S decreased (P &lt; 0.001) with the addition of BSS. Final liver Cu concentration was reduced (P = 0.042) by 58% in cattle fed BSS, indicating that BSS may decrease Cu absorption and storage in the liver. The results observed in this experiment indicate that BSS does not have negative effects on feedlot steer performance whereas CAN may hinder performance of steers fed finishing diets.


2019 ◽  
Vol 97 (Supplement_1) ◽  
pp. 12-12
Author(s):  
Miranda K Stotz ◽  
Sebastian E Mejia-Turcios ◽  
Andrea M Osorio ◽  
Nadira Espinoza ◽  
Philip M Urso ◽  
...  

Abstract Heat stress (HS) has been indicated to increase ruminal temperature, increase digestibility, and reduce ruminal pH of steers fed high concentrate diets. However, it is unclear if this effect is the result of greater fermentation rate, slower passage rate or a combination. The effect of ruminal incubation temperature on substrate digestibility and rate of fermentation were evaluated. Four cannulated British-crossbreed steers (BW = 520 kg ± 30 kg) consuming an 87% (DM) concentrate diet were utilized as rumen fluid donors in a randomized complete block design with two incubation treatments (CON=39°C and HS=42°C). Within block, duplicate 125 mL serum bottles containing 200 mg of dietary substrate were inoculated with a 2:1 buffer:ruminal fluid mixture and incubated for 24 h to measure total gas production, fermentation rate, fermentation lag, pH, and ammonia-N concentration. In vitro organic matter digestibility (IVOMD) was measured separately in 100 mL centrifuge tubes. Data were analyzed using the MIXED procedure of SAS using the fixed effect of treatment and random effect of rumen fluid donor (block). There was no treatment effect on total gas production (P = 0.92) or fermentation rate (P = 0.11); however, HS began fermenting substrate sooner than CON (P < 0.005). There was a significant effect of treatment on IVOMD where HS was greater compared to CON (79.3 vs. 70.4%; P = 0.05). Final pH and relative pH change were not different (P ≥ 0.25) likely due to buffering capacity of the in vitro technique Ammonia-N concentration was greater for HS than CON (7.92 vs. 5.33 mM; P < 0.05) and may indicate a temperature effect on ruminal nitrogen availability.In conclusion, it does not appear that incubating at a greater temperature affected the fermentation rate but likely induced a change in fermentation kinetics, which may have contributed to the greater overall IVOMD


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 182-182
Author(s):  
Marjorie A Killerby ◽  
Diego Zamudio ◽  
Kaycee Ames ◽  
Darren D Henry ◽  
Thomas Schwartz ◽  
...  

Abstract This study evaluated the effects of preservatives on the in vitro fermentation measures of wet brewer’s grain (WBG) silage at different stages of storage. Treatments (TRT) were sodium lignosulfonate at 1% (NaL1) and 2% (NaL2; w/w of fresh WBG), propionic acid (PRP; 0.5% w/w of fresh WBG), a combination inoculant (INO; Lactococcus lactis and Lactobacillus buchneri each at 4.9 log cfu/fresh WBG g), and untreated WBG (CON). WBG (Fresh) were packed into 8.8 L mini-silos and stored for 60 d at 21°C (Ensiled), then they were opened and aerobically exposed for 10d (AES). Samples from each stage of storage (STG; Fresh, Ensiled and AES) were analyzed for in vitro ruminal digestibility (24 h).Gas kinetics were recorded using the Ankom RF Gas Production System. Data were analyzed as a randomized complete block design (5 blocks) with a 5 (TRT) × 3 (STG) factorial arrangement. Apparent in vitro DM digestibility (DMD) decreased across STG, (51.5, 47.2 and 40.9 for Fresh, Ensiled and AES, respectively) and increased for NaL1, NaL2 and PRP (~47.8) vs. CON (43.0 ± 2.12%). PRP increased apparent in vitro OM digestibility (OMD) when Ensiled (54.5) and NaL2 increased it for AES (47.1) vs CON (46.3 and 39.9 ± 1.73%, respectively). The asymptotic maximal (M) and rate (k) of gas production decreased across STG (214.6, 181.5, 155.1 and 14.6, 12.6, and 9.8, for Fresh, Ensiled and AES, respectively). PRP increased (200.0) and NaL1 decreased (169.3) M vs. CON (183.9± 7.81ml/incubated DM g), while NaL1 and NaL2 (~11.4) decreased k vs. CON (13.4 ± 0.85%/h). Methane concentration and yield were higher in Fresh vs. other STG (0.94 vs. ~0.84 ± 0.07mM and 0.27 vs. ~0.23 ± 0.03mmol/g fermented OM). Spoilage of WBG decreases fermentability and methane production while PRP and NaL improve digestibility with the former also increasing M and k.


Sign in / Sign up

Export Citation Format

Share Document