Evaluation of Current Derivative Spectrophotometric Methodology for the Determination of Percent Carboxyhemoglobin Saturation in Postmortem Blood Samples*

1989 ◽  
Vol 13 (1) ◽  
pp. 37-46 ◽  
Author(s):  
B.J. Perrigo ◽  
B.P. Joynt
2005 ◽  
Vol 24 (4) ◽  
pp. 275-281 ◽  
Author(s):  
Vassiliki A. Boumba ◽  
Theodore Vougiouklakis

Numerous methods have been described in the literature for the determination of carboxyhemoglobin (COHb) in whole blood. The most popular and widely used have been (1) the spectrophotometric methods, which could be performed either by using a conventional spectrophotometer or by using specialized automated instruments known as CO-oximeters; (2) the gas chromatographic methods, with variable detection systems, which have been considered as the reference methods for every carbon monoxide analysis. The authors have critically reviewed previously reported comparative studies on these methods, considering statistical and analytical matters, in order to propose the best method for the determination of COHb in postmortem blood, that could be utilized in forensic toxicology laboratories where such analyses are limited in number (less than 20 per year). Criteria for evaluation have been accuracy, reliability, simplicity, time, and cost. The authors’ concluding statement has been that the manual spectrophotometric method could be the method of choice for COHb determination in postmortem blood samples. It is simple, rapid, and reliable and fulfills the forensically acceptable accuracy. It is performed by the use of a conventional spectrophotometer, which is considered a basic instrument in every analytical laboratory.


1990 ◽  
Vol 35 (6) ◽  
pp. 12967J ◽  
Author(s):  
Fumiyo Kusu ◽  
Taeko Tsuneta ◽  
Kiyoko Takamura

2013 ◽  
Vol 127 (6) ◽  
pp. 1101-1107 ◽  
Author(s):  
Verena Kiencke ◽  
Hilke Andresen-Streichert ◽  
Alexander Müller ◽  
Stefanie Iwersen-Bergmann

Author(s):  
Camila Scheid ◽  
Sarah Eller ◽  
Anderson Luiz Oenning ◽  
Eduardo Carasek ◽  
Josias Merib ◽  
...  

Abstract Synthetic drugs for recreational purposes are in constant evolution, and their consumption promotes a significant increase in intoxication cases, resulting in damaging public health. The development of analytical methodologies to confirm the consumption of illicit drugs in biological matrices is required for the control of these substances. This work exploited the development of an extraction method based on homogenous liquid–liquid microextraction with switchable hydrophilicity solvent (SHS) as extraction phase for the determination of the synthetic drugs 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyamphetamine and N-methoxybenzyl-methoxyphenylethylamine derivates (25B, 25C and 25I) in postmortem blood, followed by liquid chromatography coupled to mass spectrometry in tandem. The optimized sample preparation conditions consisted of using 250 µL of ZnSO4 10% and 50 µL of NaOH 1 mol/L in the protein precipitation step; N,N-dimethylcyclohexylamine was used as SHS, 650 μL of a mixture of SHS:HCl 6 mol/L (1:1 v/v), 500 μL of whole blood, 500 μL of NaOH 10 mol/L and 1 min of extraction time. The proposed method was validated, providing determination coefficients higher than 0.99 for all analytes; limit of detection and limit of quantitation ranged from 0.1 to 10 ng/mL; intra-run precision from 2.16% to 9.19%; inter-run precision from 2.39% to 9.59%; bias from 93.57% to 115.71% and matrix effects from 28.94% to 51.54%. The developed method was successfully applied to four authentic postmortem blood samples from synthetic drugs users, and it was found to be reliable with good selectivity.


2016 ◽  
Vol 147 (8) ◽  
pp. 1415-1421 ◽  
Author(s):  
Marek Wiergowski ◽  
Mateusz K. Woźniak ◽  
Marzena Kata ◽  
Marek Biziuk

2013 ◽  
Vol 20 (6) ◽  
pp. 655-658 ◽  
Author(s):  
Paula Proença ◽  
Carla Mustra ◽  
Mariana Marcos ◽  
João Miguel Franco ◽  
Francisco Corte-Real ◽  
...  

2016 ◽  
Vol 5 (10) ◽  
pp. 4920
Author(s):  
Amar M. Ali ◽  
Hussain. J. Mohammed*

A new, simple, sensitive and rapid spectrophotometric method is proposed for the determination of trace amount of Nickel (II). The method is based on the formation of a 1:2 complex with 4-(4-((2-hydroxy-6-nitrophenyl) diazenyl) -3-methyl-5-oxo-2, 5-dihydro-1H-pyrazol-1-yl) benzenesulfonic acid (2-ANASP) as a new reagent is developed. The complex has a maximum absorption at 516 nm and εmax of 1. 84 X 105 L. mol-1. cm-1. A linear correlation (0. 25 – 4. 0μg. ml-1) was found between absorbance at λmax and concentration. The accuracy and reproducibility of the determination method for various known amounts of Nickel (II) were tested. The results obtained are both precise (RSD was 1. 2 %) and accurate (relative error was 0. 787 %). The effect of diverse ions on the determination of Nickel (II) to investigate the selectivity of the method were also studied. The stability constant of the product was 0. 399 X 106 L. mol-1. The proposed method was successfully applied to the analysis of diabetes blood and normal human blood. 


Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 78
Author(s):  
Sevasti Karampela ◽  
Jessica Smith ◽  
Irene Panderi

An ever-increasing need exists within the forensic laboratories to develop analytical processes for the qualitative and quantitative determination of a broad spectrum of new psychoactive substances. Phenylethylamine derivatives are among the major classes of psychoactive substances available on the global market and include both amphetamine analogues and synthetic cathinones. In this work, an ultra-high-performance liquid chromatography-positive ion electrospray ionization tandem mass spectrometric method (UHPLC-ESI-MS/MS) has been developed and fully validated for the determination of 19 psychoactive substances, including nine amphetamine-type stimulants and 10 synthetic cathinone derivatives, in premortem and postmortem whole blood. The assay was based on the use of 1 mL premortem or postmortem whole blood, following solid phase extraction prior to the analysis. The separation was achieved on a Poroshell 120 EC-C18 analytical column with a gradient mobile phase of 0.1% formic acid in acetonitrile and 0.1% formic acid in water in 9 min. The dynamic multiple reaction monitoring used in this work allowed for limit of detection (LOD) and lower limit of quantitation (LOQ) values of 0.5 and 2 ng mL−1, respectively, for all analytes both in premortem and postmortem whole blood samples. A quadratic calibration model was used for the 12 quantitative analytes over the concentration range of 20–2000 ng mL−1, and the method was shown to be precise and accurate both in premortem and postmortem whole blood. The method was applied to the analysis of real cases and proved to be a valuable tool in forensic and clinical toxicology.


Sign in / Sign up

Export Citation Format

Share Document