The Chimeric Bud-Sport ‘Delicious’ (Red) Mutant Strain, It, Expresses Lethal-Effect Resistance Against the Obliquebanded Leafroller (Lepidoptera: Tortricidae)

2020 ◽  
Vol 113 (5) ◽  
pp. 2285-2292
Author(s):  
Joseph Schwarz ◽  
Joshua Milnes ◽  
Jay Brunner

Abstract Three ‘Red Delicious,’ Malus domestica Borkhausen (Rosales: Rosaceae), apple plantings, each representing a different sport, were evaluated for natural resistance against the obliquebanded leafroller (OBLR), Choristoneura rosaceana (Harris). The establishment of neonate larvae on apple foliage was not different between the three ‘Red Delicious’ plantings. Of the three ‘Red Delicious’ plantings, the one that most negatively impacted OBLR was the ‘It Delicious’ genotype. The ‘It Delicious’ genotype at the Sunrise Research Orchard exhibited essentially 100% mortality against OBLR when fed on spring and summer foliage, and mortality accumulated faster across instars than on other ‘Red Delicious’ plantings. The high mortality observed in the ‘It Delicious’ genotype points to the existence of a putative gene, which we propose as Cro1. The other ‘Red Delicious’ plantings, Columbia River Orchard and Tree Fruit Research and Extension Center Research Orchard treatments, showed negative impacts, especially when exposed to foliage from the summer compared to the spring period. Development rates in these treatments in spring were higher compared to summer, and there were direct relationships between development rates, pupal weights, and adult longevity for both males and females. These latter results suggest that sublethal effects could be present in these ‘Red Delicious’ cultivars, thus offering insights to a gene-pyramiding strategy for breeders to managing leafroller pests in Washington apple.

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
El-Sayed Mokbel ◽  
Amal Huesien

Abstract Background The cotton leafworm, Spodoptera littoralis (Boisd.), is a serious economic pest in Egypt. Pest control depends mainly on chemical control with several pesticides include conventional and modern insecticides. Comprehensive analysis of pesticides impacts needs to investigate sublethal effects in addition to lethal effect. Results In the current study, the leaf-dip bioassay method was used to evaluate emamectin benzoate (EMB) sublethal concentrations. Results showed that EMB proved high toxicity against S. littorals with LC50 value of 0.019 mg liter−1. Life table analysis showed that treatments with LC5 and LC15 prolonged larval period, mean longevity of males and females, mean generation time (T), doubling time (DT), adult preovipositional period (APOP), and total preovipositional period (TPOP) compared with control. On the contrary, net reproduction rates (R0), intrinsic rates of increase (r), finite rate (λ), fecundity, gross reproductive rate (GRR), and relative fitness were decreased compared to control. Conclusions The current study clarified that sublethal concentrations of EMB induce adverse effects and suppress the population growth of S. littorals. Our results would be useful to assess the overall effects of EMB on S. littorals and can contribute effectively in pest management.


1995 ◽  
Vol 127 (4) ◽  
pp. 577-586 ◽  
Author(s):  
Y. Carrière ◽  
S. Paré ◽  
B.D. Roitberg

AbstractThe daily pattern of oviposition, the rank order of oviposition preference for three potential hosts, and the effect of experience on oviposition preference were investigated under natural abiotic conditions in the obliquebanded leafroller, Choristoneura rosaceana. Females from the two adult cohorts occurring seasonally oviposited between 0400 and 2400 hours, with peak oviposition around 2000 hours. Both non-choice and choice oviposition trials revealed that the apple and snowberry hosts were preferred over wild rose. Oviposition preference resulted in delays in laying on the less preferred host, but seemed to have no effect on clutch size. Females caged with exclusive access to one of the three hosts appeared to have similar lifetime fecundity or longevity. A first oviposition on wild rose resulted in a delay in laying a second clutch on that host, which suggests the presence of aversive learning that could function to reduce the liklihood of laying successive clutches on a less preferred host. A first oviposition on the apple host, however, seemed to have no effect on further oviposition preference. Hence, it appears that learning would not function specifically to concentrate foraging of the females within apple orchards.


1986 ◽  
Vol 118 (4) ◽  
pp. 351-359 ◽  
Author(s):  
M.T. AliNiazee

AbstractSeasonal history, adult flight activity, and damage of the obliquebanded leafroller, Choristoneura rosaceana (Harris), on filbert were studied during a 7-year period between 1976 and 1984. Data from periodic field counts and moth catches in sex-attractant traps indicated two generations per year. The first-generation adult capture peak was generally higher than the second, except in 1978 when about an equal number of moths were trapped from both generations. A physiological time scale, using degree-days (DD), was devised for predicting emergence of obliquebanded leafroller adults. The first adults from overwintering larvae emerged at approximately 374 DD above a threshold of 10 °C starting 1 March. A total of 1172 DD were required between the first and the last adult emergence during the first generation and about 519 DD during the second generation. The obliquebanded leafroller causes both foliar and nut damage in filbert orchards of Oregon. Foliar damage was insignificant, but nut damage, caused exclusively by the first-generation larvae during June and early July, was highly destructive. Larval feeding on nuts caused staining and premature drop of infested nuts resulting in substantial yield reduction in heavily infested orchards.


2002 ◽  
Vol 134 (3) ◽  
pp. 303-309 ◽  
Author(s):  
I. Pronier ◽  
J. Paré ◽  
J-C Wissocq ◽  
C. Vincent

AbstractA virus isolated from obliquebanded leafroller, Choristoneura rosaceana (Harris), larvae collected in an apple, Malus domestica Borkh. (Rosaceae), orchard of Saint-Joseph-du-Lac (Quebec, Canada) was studied. Microscopic studies revealed that it was a uninucleocapsid nucleopolyhedrovirus from the family Baculoviridae. Larval mortality was approximately 75% (0% mortality in control group) in larvae infected as third instars immersed in a suspension of 1.7 × 108 occlusion bodies/mL. The average time for larval mortality was 23 ± 3 d after treatment. The majority (95.5%) of infected larvae died as fifth or sixth instars. Infection was observed primarily in fat body cells, and occasionally in the tracheal matrix and epidermis. Mean larval development time of infected larvae surviving to pupae was 20 ± 3 d, significantly greater than the 18 ± 3 d observed in control larvae. Adult emergence was significantly lower in pupae of treated larvae (73.6%) than in the control group (93.5%). Our work constitutes the first baseline study of naturally occurring virus of the obliquebanded leafroller.


2006 ◽  
Vol 138 (2) ◽  
pp. 218-227 ◽  
Author(s):  
R.M. Trimble ◽  
Ashraf M. El-Sayed

AbstractThe effect of certain monounsaturated dodecene and tetradecene acetates and alcohols on electroantennogram (EAG) response and pheromone-mediated trap catch was examined in male obliquebanded leafroller moths, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). The stimulation of antennae with 0.1 ng of (Z)-11-tetradecenyl acetate (Z11-14:Ac), the major pheromone compound of this species, elicited an EAG response. The use of 1 ng of (Z)-9-tetradecenyl acetate (Z9-14:Ac) or (E)-9-tetradecenyl acetate (E9-14:Ac) or 10 ng of (Z)-9-dodecenyl acetate (Z9-12:Ac) or (E)-9-dodecenyl acetate (E9-12:Ac) was required to elicit a response. One hundred nanograms of (E)-9-tetradecenol (E9-14:OH) were required to elicit a response from antennae. The stimulation of antennae with up to 100 ng of (Z)-9-tetradecenol (Z9-14:OH) did not elicit a response. The addition of 0.1 mg of Z9-12:Ac to 1 mg of synthetic C. rosaceana pheromone consisting of a 100:2:1.5:1 blend of Z11-14:Ac, (E)-11-tetradecenyl acetate, (Z)-11-tetradecenol, and (Z)-11-tetradecenal reduced the capture of moths in pheromone-baited traps by more than 72%. Trap catch was reduced by more than 90% by the addition of 0.01 mg of Z9-14:Ac or E9-14:Ac to 1 mg of C. rosaceana pheromone. There was no detectable reduction in trap catch when 1 mg of E9-12:Ac, Z9-14:OH, or E9-14:OH was added to 1 mg of C. rosaceana pheromone. There was a greater than 95% reduction in trap catch when sources of Z9- or E9-12:Ac were mounted at the entrances to traps, 10 cm from the pheromone source. Trap catch was not affected by placing sources of Z9- or E9-14:Ac at trap entrances. Four 1 or 10 mg sources of E9-14:Ac placed 1 m from a trap did not affect the number of male C. rosaceana captured. The study demonstrates that although a compound may have profound attraction inhibiting activity when mixed directly with C. rosaceana pheromone, this activity may be lost if the inhibitor is emitted a short distance from the pheromone. The study also demonstrates that a potent attraction inhibitor such as E9-14:Ac does not repel C. rosaceana males and must be present along with pheromone to affect the behavior of this species.


2017 ◽  
Vol 22 (1) ◽  
pp. 148 ◽  
Author(s):  
Ya Ying Li ◽  
Xiao Fan ◽  
Guo Hao Zhang ◽  
YI QING LIU ◽  
HAN QIU CHEN ◽  
...  

Traditional estimating only by measuring the lethal effect of acaricides may underestimate the total effects of acaricides on the pest mites. In order to investigate the sublethal effect of bifenazate on life history and population parameters of the two-spotted spider mite, Tetranychus urticae Koch, the newly emerged females were treated with two lethal concentrations of bifenazate: LC10 (4.92 μg/mL) and LC20 (8.77 μg/mL). Subsequently, the development and fecundity of the progeny generations were observed. Compared to the control, exposure to the 10% lethal concentrations (LC10) and LC20 of bifenazate severely affected the parental generation of T. urticae, including survival rate (reduced 9% and 13%), oviposition period (reduced 77.6% and 83.1%), fecundity per female (decreased 89.2% and 76.9%) and longevity (decreased 79.2% and 83.1%). Besides, the population parameters of the progeny generation from the treated females were also investigated. The results showed that the progeny generation had lower intrinsic rate of increase (rm) and finite rate of increase (λ), longer mean generation time (Tc) compared to the control. The results suggested that the sublethal effects of bifenazate on population growth of T. urticae were significant, and the results of this study could be used as a guide for the rational use of bifenazate in the field for better managing pest mites.


2019 ◽  
Vol 24 (8) ◽  
pp. 1512-1525
Author(s):  
Niloufar Sangak Sani Bozhgani1 ◽  
Katayoon Kheradmand ◽  
Aliasghar Talebi

Estimating sublethal effects of acaricides on phytoseiid mites and their prey as a reliable approach in predicting the acaricides impacts is mandatory for IPM programs. The aim of this study was to evaluate the effects of spiromesifen on life history traits and demographic parameters of the offspring of Neoseiulus californicus and Tetranychus urticae under laboratory conditions [25 ± 2ºC, 70 ± 5% RH and 16:8 (L:D) h]. The experiments were conducted based on the leaf-dip technique. The crude data were analysed based on age-stage, two-sex life table analysis. The pre-adult and adult longevity of both sexes significantly reduced for N. califonicus and T. urticae with the concentration enhancing from LC20 to LC35. In addition, the oviposition period for both species significantly decreased as a consequence of treatment with LC25 and LC35 of spiromesifen. The minimal values of the total fecundity for N. califonicus and T. urticae were 16.58 and 19.35 (offspring/individual), respectively, which was related to LC35 concentration. Further, the lowest values of R0 and GRR of N. califonicus and its prey were 48.88 and 31.14 (offspring/individual) in LC35, respectively. However, the intrinsic rate of increase (r) and finite rate of increase (λ) were not significantly influenced by sublethal concentration in N. californicus while the r and λ were significantly reduced in T. urticae treated by LC20, LC25 and LC35. Therefore, spiromesifen could profoundly decrease the population growth rate of T. urticae but can not be considered as a compatible acaricide with N. califonicus because of its negative effect on the longevity, total lifespan, and reproductive periods and should not be used with this predatory mite in integrated pest management programs.


Sign in / Sign up

Export Citation Format

Share Document