Knockdown of Uridine Diphosphate Glucosyltransferase 86Dg Enhances Susceptibility of Tribolium castaneum (Coleoptera: Tenebrionidae) to Artemisia vulgaris (Asterales: Asteraceae) Essential Oil

Author(s):  
Shanshan Gao ◽  
Haidi Sun ◽  
Jiahao Zhang ◽  
Yonglei Zhang ◽  
Peipei Sun ◽  
...  

Abstract Uridine diphosphate glucosyltransferases (UGTs), which are phase II detoxification enzymes, are found in various organisms. These enzymes play an important role in the detoxification mechanisms of plant allelopathy and in insects. Artemisia vulgaris L. (Asterales: Asteraceae: Artemisia) essential oil has strong contact toxicity to Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) larvae. However, the effect of A. vulgaris essential oil on UGTs is unclear. In this study, A. vulgaris essential oil was shown to significantly induce the expression of the TcUgt86Dg transcript. Furthermore, treatment of TcUgt86Dg-silenced individuals with A. vulgaris essential oil resulted in higher mortality than for the control individuals, indicating that TcUgt86Dg is involved in detoxification of A. vulgaris essential oil in T. castaneum. The developmental expression profile showed that the expression of TcUgt86Dg in late adults was higher than in other developmental stages. Furthermore, the expression profile in adult tissues revealed higher expression of TcUgt86Dg in the head, antenna, fat body, and accessory gland than in other tissues. These data show that TcUgt86Dg may be involved in the metabolism of exogenous toxins by T. castaneum; thus, our results have elucidated one possible mechanism of resistance to A. vulgaris essential oil and provide a theoretical basis for a control scheme for T. castaneum.

2021 ◽  
Vol 3 ◽  
Author(s):  
Shan-Shan Gao ◽  
Rui-Min Li ◽  
Shuang Xue ◽  
Yuan-Chen Zhang ◽  
Yong-Lei Zhang ◽  
...  

The red flour beetle, Tribolium castaneum (T. castaneum), generates great financial losses to the grain storage and food processing industries. Previous studies have shown that essential oil (EO) from Artemisia vulgaris (A. vulgaris) has strong contact toxicity to larvae of the beetle, and odorant-binding proteins (OBPs) contribute to the defense of larvae against A. vulgaris. However, the functions of OBPs in insects defending against plant oil is still not clear. Here, expression of one OBP gene, TcOBPC17, was significantly induced 12–72 h after EO exposure. Furthermore, compared to the control group, RNA interference (RNAi) against TcOBPC17 resulted in a higher mortality rate after EO treatment, which suggests that TcOBPC17 involves in the defense against EO and induces a declining sensitivity to EO. In addition, the tissue expression profile analysis revealed that the expression of TcOBPC17 was more abundant in the metabolic detoxification organs of the head, fat body, epidermis, and hemolymph than in other larval tissue. The expression profile of developmental stages showed that TcOBPC17 had a higher level in early and late adult stages than in other developmental stages. Taken together, these results suggest that TcOBPC17 could participate in the sequestration process of exogenous toxicants in T. castaneum larvae.


2011 ◽  
Vol 6 (6) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Lilian R. Descamps ◽  
Carolina Sánchez Chopa ◽  
Adriana A. Ferrero

Essential oils extracted from leaves and fruits of Schinus areira (Anacardiaceae) were tested for their repellent, toxic and feeding deterrent properties against Tribolium castaneum (Coleoptera: Tenebrionidae) larvae and adults. A topical application assay was employed for the contact toxicity study and filter paper impregnation for the fumigant assay. A treated diet was also used to evaluate the repellent activity and a flour disk bioassay for the feeding deterrent action and nutritional index alteration. The essential oil of the leaves contained mainly monoterpenoids, with α-phellandrene, 3-carene and camphene predominant, whereas that from the fruits contained mainly α-phellandrene, 3-carene and β-myrcene. The leaf essential oil showed repellent effects, whereas that from the fruit was an attractant. Both oils produced mortality against larvae in topical and fumigant bioassays, but fumigant toxicity was not found against adults. Moreover, both essential oils produced some alterations in nutritional index. These results show that the essential oils from S. areira could be applicable to the management of populations of Tribolium castaneum.


2010 ◽  
Vol 13 (4) ◽  
pp. 369-373 ◽  
Author(s):  
Soon-Il Kim ◽  
June-Sun Yoon ◽  
Je Won Jung ◽  
Ki-Bae Hong ◽  
Young-Joon Ahn ◽  
...  

2014 ◽  
Vol 79 (10) ◽  
pp. 1213-1222 ◽  
Author(s):  
Hai Chen ◽  
Kai Yang ◽  
Chun You ◽  
Shu Du ◽  
Qian Cai ◽  
...  

The essential oil obtained from Citrus wilsonii Tanaka leaves with hydrodistillation was investigated by GC and GC-MS. The main components of the essential oil were identified to be citronellol (16.94%), nerol acetate (10.35%), ?-terpinen (9.85%), citronellal (9.36%) and ?-pinene (6.72%). Among them, the four active constituents, predicted with a bioactivity-test, were isolated and identified as citronellol, ?-terpinene, nerol (neryl) acetate and ?-pinene. It was found that the essential oil of C. wilsonii leaves and isolated compounds possessed fumigant and contact toxicity against Tribolium castaneum adults. The essential oil and ?-terpinen showed strong fumigant toxicity against T. castaneum (LC50 = 8.18 and 4.09 mg L-1). Repellency of the crude oil and active compounds was also determined. Citronellol, neryl acetate and ?-pinene were strongly repellent (100%, 86% and 92%, respectively, at 78.63 nL cm-2, after 2 h treatment) against T. castaneum. The essential oil and citronellol exhibited the same level of repellency compared with the positive control, DEET. The results indicate that the essential oil of C. wilsonii leaves and its active compounds had the potential to be developed as natural fumigants, insecticides and repellents for control of T. castaneum.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 345
Author(s):  
Jun-Yu Liang ◽  
Jie Xu ◽  
Ying-Ying Yang ◽  
Ya-Zhou Shao ◽  
Feng Zhou ◽  
...  

Investigations have indicated that storage pests pose a great threat to global food security by damaging food crops and other food products derived from plants. Essential oils are proven to have significant effects on a large number of stored grain insects. This study evaluated the contact toxicity and fumigant activity of the essential oil extract from the aerial parts of Elsholtzia ciliata and its two major biochemical components against adults and larvae of the food storage pest beetle Tribolium castaneum. Gas chromatography–mass spectrometry analysis revealed 16 different components derived from the essential oil of E. ciliata, which included carvone (31.63%), limonene (22.05%), and α-caryophyllene (15.47%). Contact toxicity assay showed that the essential oil extract exhibited a microgram-level of killing activity against T. castaneum adults (lethal dose 50 (LD50) = 7.79 μg/adult) and larvae (LD50 = 24.87 μg/larva). Fumigant toxicity assay showed LD50 of 11.61 mg/L air for adults and 8.73 mg/L air for larvae. Carvone and limonene also exhibited various levels of bioactivity. A binary mixture (2:6) of carvone and limonene displayed obvious contact toxicity against T. castaneum adults (LD50 = 10.84 μg/adult) and larvae (LD50 = 30.62 μg/larva). Furthermore, carvone and limonene exhibited synergistic fumigant activity against T. castaneum larvae at a 1:7 ratio. Altogether, our results suggest that E. ciliata essential oil and its two monomers have a potential application value to eliminate T. castaneum.


Sign in / Sign up

Export Citation Format

Share Document