Bt Cry1Ie Toxin Does Not Impact the Survival and Pollen Consumption of Chinese Honey Bees,Apis cerana cerana(Hymenoptera, Apidae)

2016 ◽  
Vol 109 (6) ◽  
pp. 2259-2263 ◽  
Author(s):  
Ping-Li Dai ◽  
Hui-Ru Jia ◽  
Cameron J. Jack ◽  
Li-Li Geng ◽  
Feng Liu ◽  
...  
2013 ◽  
Vol 68 (11-12) ◽  
pp. 509-521 ◽  
Author(s):  
Weina Shi ◽  
Jing Sun ◽  
Baohua Xu ◽  
Han Li

Cytochrome P450 proteins, widely distributed multifunctional enzymes, are mainly involved in biosynthetic and degradative pathways of endogenous compounds and the detoxification of xenobiotics in insects. Moreover, these enzymes exhibit peroxidase-like activity, therefore they may be involved in protecting organisms against the toxicity of reactive oxygen species (ROS). In the present study, we cloned a CYP4G11 gene - AccCYP4G11 - from the Chinese honey-bee (Apis cerana cerana). The open reading frame of the cDNA was 1656 bp long and encoded a 551 amino acids polypeptide, which shared high sequence identity with homologous cytochrome P450 proteins. In the genomic DNA sequence, a 5'-flanking region consisting of 1168 bp was obtained, and some putative transcription factor binding sites were predicted. Quantitative polymerase chain reaction (Q-PCR) revealed that the level of AccCYP4G11 was higher in the epidermis than in other tissues, and Acc- CYP4G11 was expressed in all stages with the highest level in two-week-old adult worker honey-bees. More over, the expression patterns under oxidative stress indicated that Acc- CYP4G11 transcription was significantly influenced by external factors, such as temperature challenges, ultraviolet (UV) light, and insecticide treatment. AccCYP4G11 was regulated differentially in response to oxidative stress and may be involved in protecting honey-bees from oxidative injury.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Hui-Ru Jia ◽  
Ping-Li Dai ◽  
Li-Li Geng ◽  
Cameron J. Jack ◽  
Yun-He Li ◽  
...  

2019 ◽  
Vol 112 (5) ◽  
pp. 2015-2029 ◽  
Author(s):  
Yali Du ◽  
Kai Xu ◽  
Weihua Ma ◽  
Wenting Su ◽  
Miaomiao Tai ◽  
...  

Abstract Correct gustatory recognition and selection of foods both within and outside the hive by honey bee workers are fundamental to the maintenance of colonies. The tarsal chemosensilla located on the legs of workers are sensitive to nonvolatile compounds and proposed to be involved in gustatory detection. However, little is known about the molecular mechanisms underlying the gustatory recognition of foods in honey bees. In the present study, RNA-seq was performed with RNA samples extracted from the legs of 1-, 10-, and 20-d-old workers of Apis cerana cerana Fabricius, a dominant indigenous crop pollinator with a keen perception ability for phytochemicals. A total of 124 candidate chemosensory proteins (CSPs), including 15 odorant-binding proteins (OBPs), 5 CSPs, 7 gustatory receptors (GRs), 2 sensory neuron membrane proteins (SNMPs), and 95 odorant receptors (ORs), were identified from the assembled leg transcriptome. In silico analysis of expression showed that 36 of them were differentially expressed among the three different ages of A. c. cerana workers. Overall, the genes encoding OBPs and CSPs had great but extremely variable FPKM values and thus were highly expressed in the legs of workers, whereas the genes encoding ORs, GRs, and SNMPs (except SNMP2) were expressed at low levels. Tissue-specific expression patterns indicated that two upregulated genes, AcerOBP15 and AcerCSP3, were predominately expressed in the legs of 20-d-old foragers, suggesting they may play an essential role in gustatory recognition and selection of plant nectars and pollens. This study lays a foundation for further research on the feeding preferences of honey bees.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Liping Sun ◽  
Xueqi Zhang ◽  
Shufa Xu ◽  
Chunsheng Hou ◽  
Jin Xu ◽  
...  

Abstract Background Sacbrood is an infectious disease of the honey bee caused by Scbrood virus (SBV) which belongs to the family Iflaviridae and is especially lethal for Asian honeybee Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV. Currently, there is a lack of an effective antiviral agent for controlling CSBV infection in honey bees. Methods Here, we explored the antiviral effect of a Chinese medicinal herb Radix isatidis on CSBV infection in A. cerana by inoculating the 3rd instar larvae with purified CSBV and treating the infected bee larvae with R. isatidis extract at the same time. The growth, development, and survival of larvae between the control and treatment groups were compared. The CSBV copy number at the 4th instar, 5th instar, and 6th instar larvae was measured by the absolute quantification PCR method. Results Bioassays revealed that R. isatidis extract significantly inhibited the replication of CSBV, mitigated the impacts of CSBV on larval growth and development, reduced the mortality of CSBV-infected A. cerana larvae, and modulated the expression of immune transcripts in infected bees. Conclusion Although the mechanism underlying the inhibition of CSBV replication by the medicine plant will require further investigation, this study demonstrated the antiviral activity of R. isatidis extract and provides a potential strategy for controlling SBV infection in honey bees.


Author(s):  
Guangdong Zhao ◽  
Wenchun Zhao ◽  
Xuepei Cui ◽  
Baohua Xu ◽  
Qingxin Liu ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 130
Author(s):  
Jun Lan ◽  
Guiling Ding ◽  
Weihua Ma ◽  
Yusuo Jiang ◽  
Jiaxing Huang

With the availability of various plants in bloom simultaneously, honey bees prefer to collect some pollen types over others. To better understand pollen’s role as a reward for workers, we compared the digestibility and nutritional value of two pollen diets, namely, pear (Pyrus bretschneideri Rehd.) and apricot (Armeniaca sibirica L.). We investigated the visits, pollen consumption, and pollen extraction efficiency of caged Apis mellifera workers. Newly emerged workers were reared, and the effects of two pollen diets on their physiological status (the development of hypopharyngeal glands and ovaries) were compared. The choice-test experiments indicated a significant preference of A. mellifera workers for apricot pollen diets over pear pollen diets (number of bees landing, 29.5 ± 8.11 and 9.25 ± 5.10, p < 0.001 and pollen consumption, 0.052 ± 0.026 g/day and 0.033 ± 0.013 g/day, p < 0.05). Both pollen diets had comparable extraction efficiencies (67.63% for pear pollen and 67.73% for apricot pollen). Caged workers fed different pollen diets also exhibited similar ovarian development (p > 0.05). However, workers fed apricot pollen had significantly larger hypopharyngeal glands than those fed pear pollen (p < 0.001). Our results indicated that the benefits conferred to honey bees by different pollen diets may influence their foraging preference.


Sign in / Sign up

Export Citation Format

Share Document