Virulence of Some Entomopathogenic Fungi Isolates of Beauveria bassiana (Hypocreales: Cordycipitaceae) and Metarhizium anisopliae (Hypocreales: Clavicipitaceae) to Aulacaspis tubercularis (Hemiptera: Diaspididae)and Icerya seychellarum (Hemiptera: Monophlebidae) on Mango Crop

Author(s):  
Atef M M Sayed ◽  
Christopher A Dunlap

Abstract Six fungal isolates of Beauveria bassiana (Balsamo) Vuillemin and one isolate of Metarhizium anisopliae (Metschnikoff) Sorokin were isolated and evaluated for their pathogenicity to Icerya seychellarum (Westwood) and Aulacaspis tubercularis Newstead. There is a positive correlation between the concentration of the fungal blastospore concentrations and the percentage of mortality. Bio-efficacy increased significantly after inoculation with increasing concentration of blastospores and elapsed time up to 12 d after inoculation. The mortality of nymphs exposed to fungal isolates at various concentrations varied between 2.5 and 88.8%. Probit analysis of data at 95% confidence limits of LC50 and LT50s showed significant differences in the susceptibility of nymphs of I. seychellarum and A. tubercularis to the tested fungal isolates. The fungal isolates of Egy-6 and Egy-9 were the most effective against I. seychellarum and A. tubercularis, respectively. They had the lowest LC50 (4.20 × 105 and 5.71 × 103 blastospore ml−1) and LT50 (ranged from 4.61 to 9.79 and 4.84 to 8.71 d), respectively. The current study showed that all the fungal isolates yielded moderate mortality rates of nymphs and adult female populations of both the tested insect pests. To our knowledge, this is the first report of bio-efficacy of Beauveria and Metarhizium isolates against members of the Diaspidadae and Monophlebidae family insects. These results establish that the use of these native entomopathogenic fungi isolates of B. bassiana (Egy-3, Egy-4, Egy-6, Egy-7, Egy-9, and Egy-10) and M. anisopliae (Egy-5) could be considered for further development as microbial control agents of the mealybug and scale insects as a potential biological agent for use in an IPM program.

2018 ◽  
Vol 19 (6) ◽  
pp. 2365-2373 ◽  
Author(s):  
AYU SAFITRI ◽  
SITI HERLINDA ◽  
ARUM SETIAWAN

Safitri A, Herlinda S, Setiawan A. 2018. Entomopathogenic fungi of soils of freshwater swamps, tidal lowlands, peatlands, and highlands of South Sumatra, Indonesia. Biodiversitas 19: 2365-2373. Ecosystems of lowlands and highlands in South Sumatra have specific characteristics of soils and vegetations that can affect the availability of entomopathogenic fungi. This study aimed to explore and identify species and to determine inoculum potentials of the entomopathogenic fungi from soils of freshwater swamps, tidal lowlands, peatlands, and highlands. Baiting of entomopathogenic fungi on soil samples used the larvae of Tenebrio molitor. The entomopathogenic fungi species found in this research were Beauveria bassiana and Metarhizium anisopliae. The number of the fungal isolates were 30 isolates consisting of nine isolates of B. bassiana and 21 isolates of M. anisopliae.The highest number of isolates was found in the highland ecosystem (11 isolates) and the lowest was found in peatland ecosystem (4 isolates). The highest percentage average of inoculum potentials of the fungi was found in the high land ecosystem (4.04%) and the lowest one was found in freshwater swamps ecosystem (2.11%). Based on the vegetation type, the soil planted with mustard in Talang Patai-Pagaralam (highland ecosystem) had the highest inoculum potentials (9.33%). These fungi will make an important contribution to the biological control for insect pests in lowland to highland ecosystems in Indonesia.


2018 ◽  
Vol 64 (3) ◽  
pp. 191-200 ◽  
Author(s):  
Cynthia Barbosa Rustiguel ◽  
María Fernández-Bravo ◽  
Luis Henrique Souza Guimarães ◽  
Enrique Quesada-Moraga

Studies conducted over the last decades have shown the potential of entomopathogenic fungi for the biocontrol of some insect pests. Entomopathogenic fungi infect their host through the cuticle, so they do not need to be ingested to be effective. These fungi also secrete secondary metabolites and proteins that are toxic to insect pests. In this context, we analyzed the pathogenicity of Metarhizium anisopliae (Metschn.) strains IBCB 384 and IBCB 425 and Beauveria bassiana (Bals.-Criv.) Vuill. strains E 1764 and E 3158 against Galleria mellonella (Linn.) larvae, during pre-invasion and post-invasion phases. The results showed M. anisopliae, especially strain IBCB 384, was most virulent in the pre-invasion phase against G. mellonella, whereas B. bassiana, especially strain E 1764, was most virulent in the post-invasion phase. During in vivo development and in the production of toxic serum, B. bassiana E 3158 was the most virulent. Different fungal growth (or toxin) strategies were observed for studied strains. Metarhizium anisopliae IBCB 425 prioritizes the growth strategy, whereas strain IBCB 384 and B. bassiana strains E 1764 and E 3158 have a toxic strategy. All strains have pathogenicity against G. mellonella, indicating their possible use for biocontrol.


2018 ◽  
Vol 17 ◽  
pp. 82-91 ◽  
Author(s):  
Dipak Khanal

Soil insect pests are the major productivity constrains of different crops among which white grubs (Coleoptera: Scarabaeidae), both adult and larval stages, are extremely destructive in nature. Laboratory studies were conducted to evaluate the virulence of an indigenous and a commercial strain of the entomopathogenic fungi, Metarhizium anisopliae (Metsch.) Sorokin, against white grubs species Chiloloba acuta by applying the dipping method at Entomology Division, NARC, Nepal. Third instars larvae of C. acuta were dipped in suspensions of indigenous and commercial strains (Pacer) of M. anisopliae at different concentrations ranging from 3.33×104 to 1.04×108 spores/ml for 3-5 seconds which resulted in 97.8% and 89% mortalities with the highest dose of 1.04×108 spores/ml 40 days after inoculation (DAI), respectively. The LC50 values for indigenous and commercial strain were 3.5×105 and 1.88×106 spores/ml, respectively, with the potency of 1:0.28 at 40 DAI. Bioassays were conducted in completely randomized design. From results it is concluded that the tested strains of entomopathogenic fungi have potential as microbial control agents in managing white grubs in laboratory and it is suggested to be tested under farmers field condition.


2021 ◽  
Vol 23 (09) ◽  
pp. 241-247
Author(s):  
S. Sumaiya Parveen ◽  
◽  
R. Philip Sridhar ◽  
S. Usha Nandhini ◽  
◽  
...  

In recent years, microbial control of insect pests is becoming popular as insect pathogens such as bacteria, viruses, fungi and nematodes serve as potential bioagents in pest management. Among the different microbial agents, entomopathogenic fungi (EPF) are gaining importance in pest control. They can be easily mass cultured on artificial media without affecting their virulence at a cheaper cost. They are highly species specific with minimal impact on non-target organisms. The current study aimed to study the efficacy of entomopathogenic fungal isolates against aphid, Myzus Persicae (Sulz.) in chilli. Laboratory and field experiments were conducted to evaluate the pathogenicity of Beauveria bassiana, Metarhizium anisopliae and Lecanicillium lecanii against chilli aphid. From the study it is revealed that B. bassiana @ 108 spores ml-1 were found to be effective and found to be more superior to the other entomopathogenic fungal isolates viz., Metarhizium anisopliae and Lecanicillium lecanii against chilli aphid.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Gamal Omar ◽  
Ahmed Ibrahim ◽  
Khalid Hamadah

Abstract Background The pink bollworm, Pectinophora gossypiella, is the most destructive pests of the cotton plant in Egypt. Due to the several problems of insecticides, the present study was conducted to evaluate the toxicity effect of the entomopathogenic fungi (EPF), Beauveria bassiana and Metarhizium anisopliae, against the different stages of the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) Results The fungal isolates exhibited a toxic effect against the treated stages, egg, larva, and pupa. According to the obtained data of LC50, B. bassiana was more potent in inducing toxicity than M. anisopliae. However, eggs of P. gossypiella were less susceptible to the EPF than the other stages. Based on total mortality, LC50 was 4.97×1011, 6.03×1012 spores/ml for egg; 8.25×108, 6.03×109 spores/ml for neonate; 2.52×108, 1.29×1010 spores/ml for early 4th instar larvae; and 6.79×108, 8.36×109 spores/ml for pupae after treatment with B. bassiana and M. anisopliae, respectively. Conclusions Entomopathogenic fungi exhibited an activity in inducing mortality against different stages of P. gossypiella.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Shehzad ◽  
Muhammad Tariq ◽  
Tariq Mukhtar ◽  
Asim Gulzar

Abstract Background The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a noxious pest of cruciferous crops all over the world causing serious economic damage. Management of insect pest generally depends on chemical control; however, due to development of resistance against all types of insecticides, alternative approaches especially utilization of a microbial agent is inevitable. Results Potential of 2 entomopathogenic fungi (EPF), viz., Beauveria bassiana and Metarhizium anisopliae, was evaluated against 2nd and 3rd larval instars of P. xylostella by adopting leaf dip and direct spraying methods under laboratory conditions. Significant mortality rate was achieved by each fungus under adopted methodologies. However, B. bassiana was found to be more effective in both conditions than M. anisopliae. Highest mean corrected mortality (77.80%) was recorded, when spores of B. bassiana were sprayed on the 2nd instar larvae (LC50=1.78×104/ml) after the 6th day of treatment. Similarly, incase of M. anisopliae LC50 for the 2nd instar at the same methodology was 2.78×104/ml with a mortality percentage of 70.0%. Offspring sex ratio was non-significantly related to treatment concentration and methodology, except for the control. Conclusion Beauveria bassiana and M. anisopliae had potential to suppress P. xylostella infestations when applied appropriately. Present findings suggested that B. bassiana and M. anisopliae when sprayed on immatures of host insect had more effect as compared to leaf dip procedure. Furthermore, no significant effect of concentrations was observed on sex ratio.


2015 ◽  
Vol 47 (3) ◽  
pp. 117 ◽  
Author(s):  
M.W. Khudhair ◽  
M.Z. Khalaf ◽  
H.F. Alrubeai ◽  
A.K. Shbar ◽  
B.S. Hamad ◽  
...  

Virulence of entomopathogenic fungi <em>Metarhizium anisopliae</em> and <em>Beauveria bassiana</em> were tested against Arabian Rhinoceros Beetle, <em>Oryctes agamemnon arabicus</em> larvae. Four concentrations (1×10<sup>5</sup>, 1×10<sup>7</sup>, 1×10<sup>9</sup> and 1×10<sup>11</sup> conidia/mL<sup>–1</sup>) of two locally isolated entomopathogenic fungi spore suspensions were used in this study via larval direct spraying. Results revealed that both isolates can cause high mortality rate reaching 100% after 29 days. However, <em>Beauveria bassiana</em> scored higher mortality rate in short time especially at the concentration of 1×10<sup>11</sup> conidia/ mL<sup>–1</sup> with lethal time (LT)<sub>50</sub> 12.75 and LT<sub>90</sub> 20.00; while, <em>Metarhizium anisopliae</em> caused the higher percentage of malformed adults. Moreover, both isolates affected insect’s life cycle particularly in the pupal stage which was reduced remarkably by almost 50% in comparison with the control treatment.


Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 665 ◽  
Author(s):  
Charalampos Filippou ◽  
Inmaculada Garrido-Jurado ◽  
Nicolai Meyling ◽  
Enrique Quesada-Moraga ◽  
Robert Coutts ◽  
...  

The use of mycoviruses to manipulate the virulence of entomopathogenic fungi employed as biocontrol agents may lead to the development of novel methods to control attacks by insect pests. Such approaches are urgently required, as existing agrochemicals are being withdrawn from the market due to environmental and health concerns. The aim of this work is to investigate the presence and diversity of mycoviruses in large panels of entomopathogenic fungi, mostly from Spain and Denmark. In total, 151 isolates belonging to the genera Beauveria, Metarhizium, Lecanicillium, Purpureocillium, Isaria, and Paecilomyces were screened for the presence of dsRNA elements and 12 Spanish B. bassiana isolates were found to harbor mycoviruses. All identified mycoviruses belong to three previously characterised species, the officially recognised Beauveria bassiana victorivirus 1 (BbVV-1) and the proposed Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1); individual B. bassiana isolates may harbor up to three of these mycoviruses. Notably, these mycovirus species are under distinct selection pressures, while recombination of viral genomes increases population diversity. Phylogenetic analysis of the RNA-dependent RNA polymerase gene sequences revealed that the current population structure in Spain is potentially a result of both vertical and horizontal mycovirus transmission. Finally, pathogenicity experiments using the Mediterranean fruit fly Ceratitis capitata showed no direct correlation between the presence of any particular mycovirus and the virulence of the B. bassiana isolates, but illustrated potentially interesting isolates that exhibit relatively high virulence, which will be used in more detailed virulence experimentation in the future.


Sign in / Sign up

Export Citation Format

Share Document