scholarly journals Comparison of Trap Designs for Detection of Euwallacea nr. fornicatus and Other Scolytinae (Coleoptera: Curculionidae) That Vector Fungal Pathogens of Avocado Trees in Florida

2019 ◽  
Vol 113 (2) ◽  
pp. 980-987
Author(s):  
Paul E Kendra ◽  
Wayne S Montgomery ◽  
Teresa I Narvaez ◽  
Daniel Carrillo

Abstract Laurel wilt and Fusarium dieback are vascular diseases caused by fungal symbionts of invasive ambrosia beetles (Coleoptera: Curculionidae: Scolytinae). Both diseases threaten avocado trees in Florida. Redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of the laurel wilt pathogen, Raffaelea lauricola, but in recent years this symbiont has been transferred laterally to at least nine other species of ambrosia beetle, which now comprise a community of secondary vectors. Dieback disease, caused by Fusarium spp. fungi, is spread by shot hole borers in the Euwallacea fornicatus species complex. In this study, we conducted field tests in Florida avocado groves to compare efficacy of four trap designs for detection of Scolytinae. Treatments included an 8-funnel Lindgren trap, black 3-vane flight interception trap, green 3-vane interception trap, white sticky panel trap, and an unbaited sticky panel (control). In two tests targeting E. nr. fornicatus and X. glabratus, traps were baited with a two-component lure (α-copaene and quercivorol). In a test targeting other species, traps were baited with a low-release ethanol lure. For E. nr. fornicatus, sticky panels and black interception traps captured significantly more beetles than Lindgren traps; captures with green traps were intermediate. With ethanol-baited traps, 20 species of bark/ambrosia beetle were detected. Trap efficacy varied by species, but in general, sticky traps captured the highest number of beetles. Results indicate that sticky panel traps are more effective for monitoring ambrosia beetles than Lindgren funnel traps, the current standard, and may provide an economical alternative for pest detection in avocado groves.

Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1479-1479 ◽  
Author(s):  
J. J. Riggins ◽  
S. W. Fraedrich ◽  
T. C. Harrington

Laurel wilt is caused by the fungus Raffaelea lauricola T.C. Harrin., Aghayeva & Fraedrich and is lethal to redbay (Persea borbonia (L.) Spreng.), sassafras (Sassafras albidum (Nutt.) Nees), and other species in the Lauraceae (1). The fungus is carried by the redbay ambrosia beetle (Xyleborus glabratus Eichh.), which is native to Asia. After being discovered in Georgia in 2002 (1), X. glabratus and R. lauricola have spread rapidly, causing extensive redbay mortality in South Carolina, Georgia, Florida, and Mississippi (1,4). The disease has also been confirmed on sassafras in Florida, South Carolina (1), and Georgia. Questions remain as to whether laurel wilt will continue to spread on sassafras, which often occurs as scattered trees in the eastern United States. In June 2010, a homeowner reported that a sassafras tree north of Van Cleave, MS (30.668°N, 88.686°W) had begun wilting in late May. This landscape tree had three 10-m high stems (~20 cm in diameter at breast height). Dark staining in the xylem was observed around the entire circumference of all three stems and nearly all leaves were bronze colored and wilted. No ambrosia beetle tunnels were observed in the stems. No other symptomatic Lauraceae were encountered in the wooded area within 300 m. The nearest known location with laurel wilt on redbay was ~15 km away (4). A Lindgren funnel trap baited with manuka oil (2) was placed at the site in June and monitored biweekly until November, but no X. glabratus adults were captured. Chips from discolored xylem of the sassafras were surface sterilized, plated on cycloheximide-streptomycin malt agar, and R. lauricola was readily isolated (1). Identity of the fungus (isolate C2792 in collection of T. Harrington) was confirmed by using partial sequences of the 28S rDNA (3). The sassafras sequence was identical to that of all known sequences of R. lauricola in the United States, including GenBank No. EU123076 (the holotype isolate from redbay). To confirm pathogenicity, isolate C2792 was grown on malt extract agar and three redbay (average: 141 cm high and 12 mm in diameter at soil interface) and three sassafras (average: 170 cm high and 17 mm in diameter at soil interface) potted plants were wound inoculated with 0.2 ml of a spore suspension (4.9 × 106 conidia/ml) (1). Three control plants of each species were inoculated with sterile deionized water. After 8 weeks in a growth chamber at 26°C, all inoculated redbay and sassafras plants exhibited xylem discoloration above and below the inoculation point, two of the redbay and two of the sassafras had died, and the other plant of each species exhibited partial wilt (the main terminal or one or more branches). All control plants were asymptomatic. R. lauricola was reisolated from all inoculated symptomatic plants but not from controls. To our knowledge, this is the first report of laurel wilt on sassafras in Mississippi. Both redbay (4) and sassafras appear to be highly susceptible to the disease as it moves westward. Sassafras is less attractive than redbay to X. glabratus and it was thought that this might contribute to slowing the spread of laurel wilt once outside the range of redbay (2). Nonetheless, our observations confirm that sassafras can be infected where laurel wilt on redbay is not in the immediate vicinity. References: (1) S. W. Fraedrich et al. Plant Dis. 92:215, 2008. (2) J. L. Hanula et al. J. Econ. Entomol. 101:1276, 2008. (3) T. C. Harrington et al. Mycotaxon 111:337, 2010. (4) J. J. Riggins et al. Plant Dis. 94:634, 2010.


Mycologia ◽  
2011 ◽  
Vol 103 (5) ◽  
pp. 1028-1036 ◽  
Author(s):  
Thomas C. Harrington ◽  
Hye Young Yun ◽  
Sheng-Shan Lu ◽  
Hideaki Goto ◽  
Dilzara N. Aghayeva ◽  
...  

Plant Disease ◽  
2011 ◽  
Vol 95 (12) ◽  
pp. 1588-1588 ◽  
Author(s):  
M. Hughes ◽  
J. A. Smith ◽  
A. E. Mayfield ◽  
M. C. Minno ◽  
K. Shin

Laurel wilt is a fungal vascular disease of redbay (Persea borbonia (L.) Spreng) and other plants in the family Lauraceae in the southeastern United States (1). The disease is caused by Raffaelea lauricola T. C. Harr., Fraedrich & Aghayeva, which is vectored by the exotic redbay ambrosia beetle (Xyleborus glabratus Eichhoff) (2). Pondspice (Litsea aestivalis (L.) Fern.) is an obligate wetland shrub listed as endangered in Florida and Maryland and threatened in Georgia (4). On 29 August 2008, 369 of 430 (85%) pondspice trees observed at St. Marks Pond in St. John's County, Florida were dead and/or dying (4). Stem samples were collected from plants with wilted and reddened foliage, entrance holes with boring dust characteristic of ambrosia beetle attack, and dark discoloration in the outer sapwood. Discolored stem sections were surface disinfested for 30 s in a 5% sodium hypochlorite solution and then plated onto cycloheximide streptomycin malt extract agar (1). Smooth, cream-buff, submerge hyphae with uneven margins resembling R. lauricola (2) was observed growing from all sapwood pieces. DNA was extracted from a single isolate (PL 392) and the 18s small subunit rDNA was PCR amplified and sequenced with primers NS1 and NS4 (3), resulting in a 1,026-bp amplicon. A BLASTn search showed identical homology to R. lauricola strain PL 159 (GenBank Accession No. EU257806). The 18s small subunit rDNA sequence was deposited into GenBank (FJ514097). In May 2011, a spore suspension was made by flooding a single-spore culture plate of isolate PL 392 with 2 ml of sterile water, collecting the spores by pipette, and quantification by hemacyometer to 1.5 × 106 spores/ml. Pathogenicity tests were conducted on 1 to 1.5 m tall pondspice plants. Six saplings were wounded by a 3/32-inch drill bit, with four receiving 50 μl of the spore suspension and two serving as water-inoculated controls. All plants were kept in a greenhouse under ambient temperature. Within 21 days, all fungal-inoculated saplings displayed complete canopy wilt, typical of laurel wilt. R. lauricola was later recovered from all four infected plants, completing Koch's postulates. To determine if the vector can reproduce in pondspice, infected stem sections were placed in a plastic rearing box indoors at room temperature, and both callow and mature adult female X. glabratus emerged in October and November 2008. Although laurel wilt has been previously observed on pondspice in South Carolina and Georgia (1), this is the first confirmation of the disease on pondspice in Florida and the first confirmation of the vector from stem material of this host. References: (1) S. W. Fraedrich et al. Plant Dis. 92:215, 2008. (2) T. C. Harrington et al. Mycotaxon 104:399, 2008. (3) M. A. Innis et al. PCR Protocols, A Guide to Methods and Applications. Academic Press. San Diego, CA, 1990. (4) J. A. Surdick and A. M. Jenkins. Pondspice (Litsea aestivalis) Population Status and Response to Laurel Wilt Disease in Northeast Florida. Florida Natural Areas Inventory, Tallahassee, FL, 2009.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1189-1189 ◽  
Author(s):  
A. Eskalen ◽  
V. McDonald

Laurel wilt disease is a newly described vascular disease of redbay (Persea borbonia (L.) Spreng.) and other members of the Lauraceae family in the southeastern United States. The disease, caused by the fungus Raffaelea lauricola and vectored by a nonnative redbay ambrosia beetle (Xyleborus glabratus Eichhoff), was first detected in Georgia in 2003 (1). Laurel wilt has caused extensive mortality of native redbay in Georgia, Florida, South Carolina, and recently, Mississippi. The avocado, Persea americana, is in the Lauraceae family and has been shown to be susceptible to the laurel wilt pathogen in Florida (3). The potential spread of this pathogen into California is of concern to the commercial avocado industry. During a survey in 2010 in a Temecula, CA avocado orchard with a history of root rot, an avocado (cv. Hass) tree with a diameter at breast height (DBH) of 45 cm was found to be showing typical laurel wilt disease symptoms. The crown was approximately 80% declined and exhibited dead branches without leaves. Black-to-brown discolored sapwood under the bark and many ambrosia beetle exit holes within 1 to 1.5 m up the bole were also observed. A Raffaelea sp. was consistently isolated from symptomatic branch tissue (from two different branches) plated onto cycloheximide-streptomycin malt agar (2) and incubated at room temperature for 2 weeks. Small subunit (18S) sequences of rDNA (approximately 1,150 bp) of three Raffaelea isolates were amplified using primers NS1 and NS4 (4) and deposited into GenBank under Accession Nos. JF327799, JF327800, and JF327801. A BLASTn search of all three sequences revealed high homology (98, 99, and 98% respectively) to an accession of R. canadensis associated with a species of ambrosia beetle (GenBank Accession No. AY858665). Pathogenicity testing was conducted by pipetting 50 μl of a 105 conidia per ml suspension of each of two isolates (UCR1080 and UCR1081) into five 2-mm-diameter holes on each of two avocado (cv. Hass) trees (10 to 15 cm DBH). Isolate UCR1080 was inoculated into three holes on Tree 1 and two holes on Tree 2. Isolate UCR1081 was inoculated into two holes on Tree 1 and three holes on Tree 2. Sterile water was used as a control in five 2-mm-diameter holes on each tree. Holes were drilled to the cambium within 1 to 2 m up the bole using a 0.157-cm electric drill. Four months later, phloem tissue was peeled back, lesion lengths were measured, and pieces of necrotic tissue were cultured for completion of Koch's postulates. R. canadensis was consistently reisolated from necrotic tissue but not from control treatments. To our knowledge, this is the first report of R. canadensis associated with wilt on avocado in California. R. canadensis is closely related to R. lauricola, however, its impact on the California avocado industry is unknown at this time. References: (1) S. W. Fraedrich et al. Plant Dis. 92:215, 2008. (2) T. C. Harrington et al. Mycotaxon 111:337, 2010. (3) A. E. Mayfield et al. Plant Dis. 92:976, 2008. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 796
Author(s):  
Xavier Martini ◽  
Marc A. Hughes ◽  
Derrick Conover ◽  
Jason Smith

This review highlights current advances in the management of the redbay ambrosia beetle, Xyleborus glabratus, a primary vector of the pathogenic fungus, Raffaelea lauricola, that causes laurel wilt. Laurel wilt has a detrimental effect on forest ecosystems of southeastern USA, with hundreds of millions of Lauraceae deaths. Currently, preventive measures mostly focus on infected-tree removal to potentially reduce local beetle populations and/or use of preventative fungicide applications in urban trees. Use of semiochemicals may offer an opportunity for the management of X. glabratus. Research on attractants has led to the development of α-copaene lures that are now the accepted standards for X. glabratus sampling. Research conducted on repellents first included methyl salicylate and verbenone and attained significant reduction in the number of X. glabratus captured on redbay and swamp bay trees treated with verbenone. However, the death rate of trees protected with verbenone, while lower compared to untreated trees, is still high. This work underscores the necessity of developing new control methods, including the integration of repellents and attractants into a single push-pull system.


2010 ◽  
Vol 100 (10) ◽  
pp. 1118-1123 ◽  
Author(s):  
T. C. Harrington ◽  
S. W. Fraedrich

The laurel wilt pathogen, Raffaelea lauricola, is a fungal symbiont of the redbay ambrosia beetle, Xyleborus glabratus, which is native to Asia and was believed to have brought R. lauricola with it to the southeastern United States. Individual X. glabratus beetles from six populations in South Carolina and Georgia were individually macerated in glass tissue grinders and serially diluted to quantify the CFU of fungal symbionts. Six species of Raffaelea were isolated, with up to four species from an individual adult beetle. The Raffaelea spp. were apparently within the protected, paired, mandibular mycangia because they were as numerous in heads as in whole beetles, and surface-sterilized heads or whole bodies yielded as many or more CFU as did nonsterilized heads or whole beetles. R. lauricola was isolated from 40 of the 41 beetles sampled, and it was isolated in the highest numbers, up to 30,000 CFU/beetle. Depending on the population sampled, R. subalba or R. ellipticospora was the next most frequently isolated species. R. arxii, R. fusca, and R. subfusca were only occasionally isolated. The laurel wilt pathogen apparently grows in a yeast phase within the mycangia in competition with other Raffaelea spp.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 181
Author(s):  
Rabiu O. Olatinwo ◽  
Stephen W. Fraedrich ◽  
Albert E. Mayfield

In recent years, outbreaks of nonnative invasive insects and pathogens have caused significant levels of tree mortality and disturbance in various forest ecosystems throughout the United States. Laurel wilt, caused by the pathogen Raffaelea lauricola (T.C. Harr., Fraedrich and Aghayeva) and the primary vector, the redbay ambrosia beetle (Xyleborus glabratus Eichhoff), is a nonnative pest-disease complex first reported in the southeastern United States in 2002. Since then, it has spread across eleven southeastern states to date, killing hundreds of millions of trees in the plant family Lauraceae. Here, we examine the impacts of laurel wilt on selected vulnerable Lauraceae in the United States and discuss management methods for limiting geographic expansion and reducing impact. Although about 13 species belonging to the Lauraceae are indigenous to the United States, the highly susceptible members of the family to laurel wilt are the large tree species including redbay (Persea borbonia (L.) Spreng) and sassafras (Sassafras albidum (Nutt.) Nees), with a significant economic impact on the commercial production of avocado (Persea americana Mill.), an important species native to Central America grown in the United States. Preventing new introductions and mitigating the impact of previously introduced nonnative species are critically important to decelerate losses of forest habitat, genetic diversity, and overall ecosystem value.


2019 ◽  
Vol 20 (4) ◽  
pp. 220-228 ◽  
Author(s):  
Rabiu Olatinwo ◽  
Stephen Fraedrich

Laurel wilt is a destructive disease of redbay (Persea borbonia) and other species in the laurel family (Lauraceae). It is caused by Raffaelea lauricola, a fungal symbiont of the redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae), cointroduced into the United States around 2002. During assessments of fungi associated with bark beetles from loblolly pine, an unknown fungus was isolated that appeared to have broad-spectrum antifungal activities. In this study, we identified the unknown fungus and determined the inhibitory effect of its secondary metabolites on R. lauricola. DNA analysis identified the fungus as Acaromyces ingoldii (GenBank accession no. EU770231). Secondary metabolites produced by the A. ingoldii completely inhibited R. lauricola mycelial growth on potato dextrose agar (PDA) plates preinoculated with A. ingoldii and reduced R. lauricola growth significantly on malt extract agar plates preinoculated with A. ingoldii. R. lauricola isolates inoculated on PDA plates 7 days after A. ingoldii were completely inhibited with no growth or spore germination. Direct evaluation of A. ingoldii crude extract on R. lauricola spores in a multi-well culture plate assay showed inhibition of spore germination at 10% and higher concentrations. Secondary metabolites from A. ingoldii could be potentially useful in managing the future spread of laurel wilt.


2021 ◽  
Author(s):  
Stephen Fraedrich

Abstract Laurel wilt is responsible for the death of hundreds of millions of redbay (Persea borbonia sensu lato) trees throughout the southeastern USA, and the disease is also having significant effects on other species such as sassafras (Sassafras albidum) in natural ecosystems and avocado (Persea americana) in commercial production areas of south Florida. Laurel wilt is caused by the pathogen Raffaelea lauricola, a fungal symbiont of the redbay ambrosia beetle, Xyleborus glabratus. Thus far, the disease is confined to members of the Lauraceae that are native to the USA, or native to such places as the Caribbean, Central America and Europe and grown in the USA. The beetle and fungus are native to Asia and were likely introduced with untreated solid wood packing material at Port Wentworth, Georgia in the early 2000s. Since that time laurel wilt has spread rapidly in the coastal plains of the southeastern USA, spreading north into central North Carolina, as far west as Texas, and reaching the southernmost counties of Florida. Current models suggest that X. glabratus can tolerate temperature conditions that occur throughout much of the eastern USA, and so the disease threatens sassafras throughout much of this region. The disease poses a threat to lauraceous species indigenous to other areas of the Americas as well as Europe and Africa.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 37 ◽  
Author(s):  
Tyler J. Dreaden ◽  
Marc A. Hughes ◽  
Randy C. Ploetz ◽  
Adam Black ◽  
Jason A. Smith

Laurel wilt is caused by the fungus Raffaelea lauricola T.C. Harr., Fraedrich and Aghayeva, a nutritional symbiont of its vector the redbay ambrosia beetle, Xyleborus glabratus Eichhoff. Both are native to Asia but appeared in Georgia in the early 2000s. Laurel wilt has since spread to much of the southeastern United States killing >300 million host trees in the Lauraceae plant family. The aims of this research were to elucidate the genetic structure of populations of R. lauricola, to examine its reproductive strategy, and determine how often the pathogen had been introduced to the USA. A panel of 12 simple sequence repeat (SSR) markers identified 15 multilocus genotypes (MLGs) in a collection of 59 isolates from the USA (34 isolates), Myanmar (18), Taiwan (6) and Japan (1). Limited diversity in the USA isolates and the presence of one MAT idiotype (mating type locus) indicated that R. lauricola was probably introduced into the country a single time. MLG diversity was far greater in Asia than the USA. Only three closely related MLGs were detected in the USA, the most prevalent of which (30 of 34 isolates) was also found in Taiwan. Although more work is needed, the present results suggest that a Taiwanese origin is possible for the population of R. lauricola in the USA. Isolates of R. lauricola from Myanmar were distinct from those from Japan, Taiwan and the USA. Although both MAT idiotypes were present in Myanmar and Taiwan, only the population from Taiwan had the genetic structure of a sexually reproducing population.


Sign in / Sign up

Export Citation Format

Share Document