Raffaelea lauricola (laurel wilt).

Author(s):  
Stephen Fraedrich

Abstract Laurel wilt is responsible for the death of hundreds of millions of redbay (Persea borbonia sensu lato) trees throughout the southeastern USA, and the disease is also having significant effects on other species such as sassafras (Sassafras albidum) in natural ecosystems and avocado (Persea americana) in commercial production areas of south Florida. Laurel wilt is caused by the pathogen Raffaelea lauricola, a fungal symbiont of the redbay ambrosia beetle, Xyleborus glabratus. Thus far, the disease is confined to members of the Lauraceae that are native to the USA, or native to such places as the Caribbean, Central America and Europe and grown in the USA. The beetle and fungus are native to Asia and were likely introduced with untreated solid wood packing material at Port Wentworth, Georgia in the early 2000s. Since that time laurel wilt has spread rapidly in the coastal plains of the southeastern USA, spreading north into central North Carolina, as far west as Texas, and reaching the southernmost counties of Florida. Current models suggest that X. glabratus can tolerate temperature conditions that occur throughout much of the eastern USA, and so the disease threatens sassafras throughout much of this region. The disease poses a threat to lauraceous species indigenous to other areas of the Americas as well as Europe and Africa.

2021 ◽  
Author(s):  
Stephen Fraedrich

Abstract Laurel wilt is responsible for the death of hundreds of millions of redbay (Persea borbonia sensu lato) trees throughout the southeastern USA, and the disease is also having significant effects on other species such as sassafras (Sassafras albidum) in natural ecosystems and avocado (Persea americana) in commercial production areas of south Florida. Laurel wilt is caused by the pathogen Raffaelea lauricola, a fungal symbiont of the redbay ambrosia beetle, Xyleborus glabratus. Thus far, the disease is confined to members of the Lauraceae that are native to the USA, or native to such places as the Caribbean, Central America and Europe and grown in the USA. The beetle and fungus are native to Asia and were likely introduced with untreated solid wood packing material at Port Wentworth, Georgia in the early 2000s. Since that time laurel wilt has spread rapidly in the coastal plains of the southeastern USA, spreading north into central North Carolina, as far west as Texas, and reaching the southernmost counties of Florida. Current models suggest that X. glabratus can tolerate temperature conditions that occur throughout much of the eastern USA, and so the disease threatens sassafras throughout much of this region. The disease poses a threat to lauraceous species indigenous to other areas of the Americas as well as Europe and Africa.


Plant Disease ◽  
2008 ◽  
Vol 92 (10) ◽  
pp. 1469-1469 ◽  
Author(s):  
S. W. Fraedrich

Extensive mortality of redbay (Persea borbonia (L.) Spreng.) has been observed in the southeastern United States since 2003. The mortality is due to laurel wilt caused by Raffaelea lauricola T. C. Harr., Fraedrich & Aghayeva, a fungal symbiont of the recently introduced redbay ambrosia beetle (RAB), Xyleborus glabratus Eichhoff (1,2). The wilt is known to affect other members of the Lauraceae including sassafras (Sassafras albidum (Nuttall) Nees) and avocado (Persea americana Mill.) (1,3). Two inoculation experiments were conducted to evaluate the susceptibility of California laurel (Umbellularia californica (Hook. & Arn.) Nutt.) to R. lauricola. Seedlings, averaging 73 cm high and 13 mm in diameter, were wounded with a drill bit (2.8 mm) to a depth of one-half the diameter of the stems. In each experiment, 10 seedlings were inoculated with one of two isolates of R. lauricola (five seedlings per isolate) obtained as previously described (1) from wilted redbays on Hilton Head Island, South Carolina and Fort George Island, Florida. In the first experiment, seedlings were inoculated with spore suspensions (0.1 ml) ranging from 1.9 to 2.3 × 106 spores/ml and produced as previously described (1). In the second experiment, seedlings were inoculated with mycelial plugs obtained from the edge of 10-day-old cultures growing on malt extract agar (MEA). Five seedlings in each experiment served as controls and were inoculated with sterile deionized water or plugs of sterile MEA. Inoculation points were wrapped with Parafilm M (Pechiney Plastic Packaging, Menasha, WI). Seedlings were grown in growth chambers (daytime temperature 26°C, nighttime 24°C, and a 15-h photoperiod) for 13 to 15 weeks. At the end of the first experiment, 7 of 10 seedlings inoculated with R. lauricola exhibited wilt that appeared as a dieback of a few to the majority of branches. Nine of the ten seedlings exhibited sapwood discoloration and the fungus was isolated from eight of these seedlings. At the end of the second experiment, 8 of 10 seedlings exhibited wilt that again appeared as a dieback of a few branches to most branches. All seedlings with wilt exhibited sapwood discoloration and the fungus was recovered from these seedlings. Two seedlings inoculated with R. lauricola exhibited no symptoms of disease and the fungus was not recovered. Control seedlings remained healthy in both experiments with no evidence of wilt or sapwood discoloration and R. lauricola was not isolated. These results indicate that California laurel is susceptible to laurel wilt caused by R. lauricola. Furthermore, the disease on California laurel may appear as a branch dieback affecting individual branches one at a time rather than a rapid wilt of the entire crown as is often observed in redbay (1). Currently, the RAB is not known to occur on the West Coast and it is also not known if this beetle is capable of attacking and producing brood on California laurel. Nonetheless, if the RAB and R. lauricola become established on the West Coast, laurel wilt could pose a serious threat to natural ecosystems as well as the avocado industry in California. References: (1) S. W. Fraedrich et al. Plant Dis. 92:215, 2008. (2) T. C. Harrington et al. Mycotaxon 104:399, 2008. (3) A. E. Mayfield, III et al. Plant Dis. 92:976, 2008.


2018 ◽  
Vol 28 (2) ◽  
pp. 109-116 ◽  
Author(s):  
Julian Mendel ◽  
Christina Burns ◽  
Beatrice Kallifatidis ◽  
Edward Evans ◽  
Jonathan Crane ◽  
...  

The invasive redbay ambrosia beetle (Xyleborus glabratus) was first detected in Savannah, GA, in 2002. This tiny beetle and its symbiotic fungal partner (Raffaelea lauricola) have led to one of the most devastating new plant diseases in recent times affecting laurel trees (Lauraceae), laurel wilt. In Florida, this devastating disease has also affected the agriculturally important avocado (Persea americana), and once symptoms are visible (i.e., wilting leaves), it is too late to save the infected tree. However, prophylactic systemic treatment with propiconazole can protect the trees from the disease for ≈12 months. This study evaluated the novel approach of using scent-discriminating canines (Canis familiaris) trained on the volatiles of laurel wilt pathogen as a proactive management tool for grove owners. Canine deployments in groves resulted in the detection of 265 presymptomatic avocado trees during two trials. In trial 1, 155 presymptomatic trees were treated with propiconazole and, over the subsequent 14-month monitoring period, 97% remained asymptomatic. In trial 2, the canines detected 100 presymptomatic trees that were not subsequently treated and 22 progressed to wilt within 2–5 weeks, and the remaining trees were removed, thus halting the observation period at 6 weeks. The canines have proven to be an effective proactive management tool.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 181
Author(s):  
Rabiu O. Olatinwo ◽  
Stephen W. Fraedrich ◽  
Albert E. Mayfield

In recent years, outbreaks of nonnative invasive insects and pathogens have caused significant levels of tree mortality and disturbance in various forest ecosystems throughout the United States. Laurel wilt, caused by the pathogen Raffaelea lauricola (T.C. Harr., Fraedrich and Aghayeva) and the primary vector, the redbay ambrosia beetle (Xyleborus glabratus Eichhoff), is a nonnative pest-disease complex first reported in the southeastern United States in 2002. Since then, it has spread across eleven southeastern states to date, killing hundreds of millions of trees in the plant family Lauraceae. Here, we examine the impacts of laurel wilt on selected vulnerable Lauraceae in the United States and discuss management methods for limiting geographic expansion and reducing impact. Although about 13 species belonging to the Lauraceae are indigenous to the United States, the highly susceptible members of the family to laurel wilt are the large tree species including redbay (Persea borbonia (L.) Spreng) and sassafras (Sassafras albidum (Nutt.) Nees), with a significant economic impact on the commercial production of avocado (Persea americana Mill.), an important species native to Central America grown in the United States. Preventing new introductions and mitigating the impact of previously introduced nonnative species are critically important to decelerate losses of forest habitat, genetic diversity, and overall ecosystem value.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 37 ◽  
Author(s):  
Tyler J. Dreaden ◽  
Marc A. Hughes ◽  
Randy C. Ploetz ◽  
Adam Black ◽  
Jason A. Smith

Laurel wilt is caused by the fungus Raffaelea lauricola T.C. Harr., Fraedrich and Aghayeva, a nutritional symbiont of its vector the redbay ambrosia beetle, Xyleborus glabratus Eichhoff. Both are native to Asia but appeared in Georgia in the early 2000s. Laurel wilt has since spread to much of the southeastern United States killing >300 million host trees in the Lauraceae plant family. The aims of this research were to elucidate the genetic structure of populations of R. lauricola, to examine its reproductive strategy, and determine how often the pathogen had been introduced to the USA. A panel of 12 simple sequence repeat (SSR) markers identified 15 multilocus genotypes (MLGs) in a collection of 59 isolates from the USA (34 isolates), Myanmar (18), Taiwan (6) and Japan (1). Limited diversity in the USA isolates and the presence of one MAT idiotype (mating type locus) indicated that R. lauricola was probably introduced into the country a single time. MLG diversity was far greater in Asia than the USA. Only three closely related MLGs were detected in the USA, the most prevalent of which (30 of 34 isolates) was also found in Taiwan. Although more work is needed, the present results suggest that a Taiwanese origin is possible for the population of R. lauricola in the USA. Isolates of R. lauricola from Myanmar were distinct from those from Japan, Taiwan and the USA. Although both MAT idiotypes were present in Myanmar and Taiwan, only the population from Taiwan had the genetic structure of a sexually reproducing population.


2018 ◽  
Vol 16 (1) ◽  
pp. 393-400 ◽  
Author(s):  
Paul E. Kendra ◽  
Wayne S. Montgomery ◽  
Jerome Niogret ◽  
Nurhayat Tabanca ◽  
David Owens ◽  
...  

AbstractRedbay ambrosia beetle, Xyleborus glabratus, is native to Southeast Asia, but subsequent to introduction in Georgia in 2002, it has become a serious invasive pest in the USA, now established in nine southeastern states. Females vector Raffaelea lauricola, the fungus that causes laurel wilt, a lethal vascular disease of trees in the family Lauraceae. Laurel wilt has caused extensive mortality in native Persea species, including redbay (P. borbonia), swampbay (P. palustris), and silkbay (P. humilis). Avocado (P. americana) is now impacted in Florida, and with continued spread, laurel wilt has potential to affect avocado and native Lauraceae in California, Mexico, and throughout the American tropics. Effective lures for detection and control of X. glabratus are critical to slow the spread of laurel wilt. No pheromones are known for this species; primary attractants are volatile terpenoids emitted from host Lauraceae. This report provides a concise summary of the chemical ecology of X. glabratus, highlighting research to identify kairomones used by females for host location. It summarizes development of essential oil lures for pest detection, including discussions of the initial use of phoebe and manuka oil lures, the current cubeb oil lure, and a newly-developed distilled oil lure enriched in (-)-α-copaene.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1248-1248 ◽  
Author(s):  
R. C. Ploetz ◽  
J. Konkol

Gulf licaria, Licaria trianda (Sw.) Kosterm., is a federally endangered member of the Lauraceae plant family in Miami-Dade County, Florida. It was never common in the area, and urban development has extirpated it from most of its former range; as of 2001, fewer than 10 trees remained in a single, remnant habitat in the continental United States, Simpson Park (25°45′31″N, 80°11′46″W) (2). Laurel wilt, caused by the fungus Raffaelea lauricola T. C. Harr., Fraedrich & Aghayeva, has recently devastated members of the Lauraceae in the southeastern United States, most notably redbay, Persea borbonia (1). As R. lauricola and its vector, the redbay ambrosia beetle Xyleborus glabratus, have spread in the region, an increasing number of taxa in this plant family have been affected by this disease (1). In 2012, seedlings of gulf licaria and redbay were obtained from local nurseries; they were grown in 30 liter pots, 1.3 m tall, had stems 3 cm in diameter 20 cm above the soil line, and were maintained with standard watering and fertilization practices. In two pathogenicity experiments on July 6 and September 25, 2012, three plants each of gulf licaria and redbay were inoculated with an isolate of R. lauricola, RL4, as described in previous experiments (3), and two plants each were mock inoculated (water control). RL4 is deposited as CBS 127349 at the Centraalbureau voor Schimmelcultures (CBS Fungal Biodiversity Centre, Utrecht, The Netherlands), and a SSU rDNA sequence for it is deposited in GenBank under Accession No. HM446155. Beginning 2 weeks after inoculation, plants were rated on a weekly basis for the development of external symptoms, on a subjective 1 (no symptoms) to 10 (dead) scale (3). After 5 weeks, inoculated plants of redbay in each experiment (positive control) had died after first developing symptoms of wilt and necrotic foliage that are typical for this disease (1). In contrast, inoculated plants of gulf licaria developed severe symptoms by the time experiments were terminated 6 and 11 weeks after inoculation; chlorosis developed on some of the leaves of all plants and these eventually abscised (mean external severities of 7.3 and 6.5, respectively), but plants did not die. Brown to greyish discoloration of sapwood developed in all inoculated plants, and the pathogen was recovered from symptomatic sapwood on CSMA (3). No symptoms developed on mock inoculated plants and the pathogen was not recovered from them. It is concluded that gulf licaria is susceptible to laurel wilt, but that it is apparently less susceptible than redbay. Whether X. glabratus is attracted to, or will bore into, gulf licaria is not known, but will play a significant role in the extent to which this rare tree is affected by laurel wilt. References: (1) S. W. Fraedrich et al. Plant Dis. 92:215, 2008. (2) G. D. Gann et al. Rare Plants of South Florida: Their History, Conservation, and Restoration. Institute for Regional Conservation, Miami, 2002. (3) R. C. Ploetz et al. Plant Pathol. 61:801, 2012.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1189-1189 ◽  
Author(s):  
A. Eskalen ◽  
V. McDonald

Laurel wilt disease is a newly described vascular disease of redbay (Persea borbonia (L.) Spreng.) and other members of the Lauraceae family in the southeastern United States. The disease, caused by the fungus Raffaelea lauricola and vectored by a nonnative redbay ambrosia beetle (Xyleborus glabratus Eichhoff), was first detected in Georgia in 2003 (1). Laurel wilt has caused extensive mortality of native redbay in Georgia, Florida, South Carolina, and recently, Mississippi. The avocado, Persea americana, is in the Lauraceae family and has been shown to be susceptible to the laurel wilt pathogen in Florida (3). The potential spread of this pathogen into California is of concern to the commercial avocado industry. During a survey in 2010 in a Temecula, CA avocado orchard with a history of root rot, an avocado (cv. Hass) tree with a diameter at breast height (DBH) of 45 cm was found to be showing typical laurel wilt disease symptoms. The crown was approximately 80% declined and exhibited dead branches without leaves. Black-to-brown discolored sapwood under the bark and many ambrosia beetle exit holes within 1 to 1.5 m up the bole were also observed. A Raffaelea sp. was consistently isolated from symptomatic branch tissue (from two different branches) plated onto cycloheximide-streptomycin malt agar (2) and incubated at room temperature for 2 weeks. Small subunit (18S) sequences of rDNA (approximately 1,150 bp) of three Raffaelea isolates were amplified using primers NS1 and NS4 (4) and deposited into GenBank under Accession Nos. JF327799, JF327800, and JF327801. A BLASTn search of all three sequences revealed high homology (98, 99, and 98% respectively) to an accession of R. canadensis associated with a species of ambrosia beetle (GenBank Accession No. AY858665). Pathogenicity testing was conducted by pipetting 50 μl of a 105 conidia per ml suspension of each of two isolates (UCR1080 and UCR1081) into five 2-mm-diameter holes on each of two avocado (cv. Hass) trees (10 to 15 cm DBH). Isolate UCR1080 was inoculated into three holes on Tree 1 and two holes on Tree 2. Isolate UCR1081 was inoculated into two holes on Tree 1 and three holes on Tree 2. Sterile water was used as a control in five 2-mm-diameter holes on each tree. Holes were drilled to the cambium within 1 to 2 m up the bole using a 0.157-cm electric drill. Four months later, phloem tissue was peeled back, lesion lengths were measured, and pieces of necrotic tissue were cultured for completion of Koch's postulates. R. canadensis was consistently reisolated from necrotic tissue but not from control treatments. To our knowledge, this is the first report of R. canadensis associated with wilt on avocado in California. R. canadensis is closely related to R. lauricola, however, its impact on the California avocado industry is unknown at this time. References: (1) S. W. Fraedrich et al. Plant Dis. 92:215, 2008. (2) T. C. Harrington et al. Mycotaxon 111:337, 2010. (3) A. E. Mayfield et al. Plant Dis. 92:976, 2008. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


2018 ◽  
Vol 28 (2) ◽  
pp. 102-108 ◽  
Author(s):  
Julian Mendel ◽  
Kenneth G. Furton ◽  
DeEtta Mills

Laurel wilt disease, incited by Raffaelea lauricola, has resulted in the death of more than 300 million laurel trees (Lauraceae) in the United States. One such tree is the commercially important avocado (Persea americana), the second largest tree crop in Florida other than citrus (Citrus sp.). This disease affects the industry in South Florida and two larger avocado industries in Mexico and California have taken notice. Trees succumb soon after infection, and once external symptoms are evident, the disease is very difficult to control and contain as the pathogen can spread to adjacent trees via root grafting. Presently, there is no viable, cost-effective method of early diagnosis and treatment. This study was undertaken to evaluate the use of scent-discriminating canines (Canis familiaris) for the detection of laurel wilt–affected wood from avocado trees. Three canines, one Belgian Malinois and two Dutch Shepherds, were trained and studied for this ability. In addition, prevailing weather conditions were recorded and evaluated to determine their effect on canine performance. The results of this evaluation indicated that canines can detect laurel wilt–affected wood and the laurel wilt pathogen and may be useful in the detection of laurel wilt–diseased trees in commercial groves.


2019 ◽  
Vol 20 (4) ◽  
pp. 220-228 ◽  
Author(s):  
Rabiu Olatinwo ◽  
Stephen Fraedrich

Laurel wilt is a destructive disease of redbay (Persea borbonia) and other species in the laurel family (Lauraceae). It is caused by Raffaelea lauricola, a fungal symbiont of the redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae), cointroduced into the United States around 2002. During assessments of fungi associated with bark beetles from loblolly pine, an unknown fungus was isolated that appeared to have broad-spectrum antifungal activities. In this study, we identified the unknown fungus and determined the inhibitory effect of its secondary metabolites on R. lauricola. DNA analysis identified the fungus as Acaromyces ingoldii (GenBank accession no. EU770231). Secondary metabolites produced by the A. ingoldii completely inhibited R. lauricola mycelial growth on potato dextrose agar (PDA) plates preinoculated with A. ingoldii and reduced R. lauricola growth significantly on malt extract agar plates preinoculated with A. ingoldii. R. lauricola isolates inoculated on PDA plates 7 days after A. ingoldii were completely inhibited with no growth or spore germination. Direct evaluation of A. ingoldii crude extract on R. lauricola spores in a multi-well culture plate assay showed inhibition of spore germination at 10% and higher concentrations. Secondary metabolites from A. ingoldii could be potentially useful in managing the future spread of laurel wilt.


Sign in / Sign up

Export Citation Format

Share Document