scholarly journals Cardiac-specific knockout of ETA receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction

2012 ◽  
Vol 4 (2) ◽  
pp. 97-107 ◽  
Author(s):  
Yingmei Zhang ◽  
Linlin Li ◽  
Yinan Hua ◽  
Jennifer M. Nunn ◽  
Feng Dong ◽  
...  

Abstract Cold exposure is associated with oxidative stress and cardiac dysfunction. The endothelin (ET) system, which plays a key role in myocardial homeostasis, may participate in cold exposure-induced cardiovascular dysfunction. This study was designed to examine the role of ET-1 in cold stress-induced cardiac geometric and contractile responses. Wild-type (WT) and ETA receptor knockout (ETAKO) mice were assigned to normal or cold exposure (4°C) environment for 2 and 5 weeks prior to evaluation of cardiac geometry, contractile, and intracellular Ca2+ properties. Levels of the temperature sensor transient receptor potential vanilloid (TRPV1), mitochondrial proteins for biogenesis and oxidative phosphorylation, including UCP2, HSP90, and PGC1α were evaluated. Cold stress triggered cardiac hypertrophy, depressed myocardial contractile capacity, including fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, reduced intracellular Ca2+ release, prolonged intracellular Ca2+ decay and relengthening duration, generation of ROS and superoxide, as well as apoptosis, the effects of which were blunted by ETAKO. Western blotting revealed downregulated TRPV1 and PGC1α as well as upregulated UCP2 and activation of GSK3β, GATA4, and CREB in cold-stressed WT mouse hearts, which were obliterated by ETAKO. Levels of HSP90, an essential regulator for thermotolerance, were unchanged. The TRPV1 agonist SA13353 attenuated whereas TRPV1 antagonist capsazepine mimicked cold stress- or ET-1-induced cardiac anomalies. The GSK3β inhibitor SB216763 ablated cold stress-induced cardiac contractile (but not remodeling) changes and ET-1-induced TRPV1 downregulation. These data suggest that ETAKO protects against cold exposure-induced cardiac remodeling and dysfunction mediated through TRPV1 and mitochondrial function.

2013 ◽  
Vol 305 (9) ◽  
pp. G638-G648 ◽  
Author(s):  
Michael E. Kiyatkin ◽  
Bin Feng ◽  
Erica S. Schwartz ◽  
G. F. Gebhart

The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity.


2018 ◽  
Vol 315 (6) ◽  
pp. C793-C802 ◽  
Author(s):  
Mohammad Shahidullah ◽  
Amritlal Mandal ◽  
Nicholas A. Delamere

Lens ion homeostasis is crucial in maintaining water content and, in turn, refractive index and transparency of the multicellular syncytium-like structure. New information is emerging on the regulation of ion transport in the lens by mechanisms that rely on transient receptor potential vanilloid (TRPV) ion channels. We found recently that TRPV1 activation leads to Ca2+/PKC-dependent ERK1/2 signaling. Here, we show that the TRPV1 agonist capsaicin (100 nM) and hyperosmotic solution (350 vs. 300 mosM) each caused an increase of bumetanide-inhibitable Rb uptake by intact porcine lenses and Na-K-2Cl cotransporter 1 (NKCC1) phosphorylation in the lens epithelium. The TRPV1 antagonist A889425 (1 µM) abolished the increases of Rb uptake and NKCC1 phosphorylation in response to hyperosmotic solution. Exposing lenses to hyperosmotic solution in the presence of MEK/ERK inhibitor U0126 (10 µM) or the with-no-lysine kinase (WNK) inhibitor WNK463 (1 µM) also prevented NKCC1 phosphorylation and the Rb uptake responses to hyperosmotic solution. WNK463 did not prevent the increase in ERK1/2 phosphorylation that occurs in response to capsaicin or hyperosmotic solution, suggesting that ERK1/2 activation occurs before WNK activation in the sequence of signaling events. Taken together, the evidence indicates that activation of TRPV1 is a critical early step in a signaling mechanism that responds to a hyperosmotic stimulus, possibly lens shrinkage. By activating ERK1/2 and WNK, TRPV1 activation leads to NKCC1 phosphorylation and stimulation of NKCC1-mediated ion transport.


2021 ◽  
Author(s):  
Elena Conte ◽  
Adele Romano ◽  
Michela De Bellis ◽  
Maria Luisa De Ceglia ◽  
Maria Rosaria Carratù ◽  
...  

We explored the involvement of Oxytocin receptor (Oxtr)/ Transient-receptor-potential-vanilloid-1 (TRPV1) genes and Oxytocin (Oxt) on the adaptation of skeletal muscle to cold stress challenge in mice. Oxtr expression in hypothalamic paraventricular (PVN), supraoptic nuclei (SON), and hippocampus (HIPP) were evaluated by immunohistochemistry in parallel with the measurement of circulating Oxt. The Oxtr and TRPV1 gene expression in Soleus (SOL) and Tibialis Anterior (TA) muscles were investigated by RT-PCR. Histological studies of the cardiac muscle after cold stress were also performed. Male mice (n=15) were divided into controls maintained at room temperature (RT=24°C), exposed to cold stress (CS) at T=4°C for 6 hours (6h), and 5 days (5d). Immunohistochemical studies showed that Oxtr protein expression increased by 2-fold (p=0.01) in PVN and by 1.5-fold (p=0.0001) in HIPP after 6h and 5d CS, but decreased by 2-fold (p=0.026) in SON at 5d. Both Oxtr and TRPV1 gene expression increased after 6h and 5d CS in SOL and TA muscles. Oxtr vs TRPV1 gene expression in SOL and TA muscles evaluated by regression analysis was linearly correlated following CS at 6h and 5d but not at control temperature of 24+1°C, supporting the hypothesis of coupling between these genes. The circulating levels of Oxt are unaffected after 6h CS but decreased by 0.2-fold (p=0.0141) after 5d CS. This is the first report that Oxtr and TRPV1 expression are upregulated in response to cold acclimation in skeletal muscle. The up-regulation of Oxtr in PVN and HIPP balances the decrease of circulating Oxt.


2021 ◽  
Author(s):  
Hsien-Yin Liao ◽  
Yi-Wen Lin

Abstract Background Fibromyalgia pain lacks objective parameters to measure treatment efficacy. Fibromyalgia patients suffer from chronic and persistent widespread pain and generalized tenderness. Transient receptor potential V1 (TRPV1), which is reported as a Ca2+ permeable ion channel that can be activated by inflammation, is reported to be involved in the development of fibromyalgia pain. Methods The current study explored the transient receptor potential vanilloid 1 (TRPV1) channel functions as a noxious sensory input in mice cold stress model. It remains unknown whether electroacupuncture (EA) attenuates fibromyalgia pain or affects the TRPV1 pathway. Results We show that cold stress increases mechanical and thermal pain (Day 7: mechanical: 1.69 ± 0.41 g; thermal: 4.68 ± 0.56 s), and that EA and Trpv1 deletion counter this increase. EA and Trpv1 deletion reduced the cold stress-induced increase in inflammatory mediators and TRPV1-related molecules in the hypothalamus, periaqueductal gray (PAG), and cerebellum of mice. Conclusions Our results imply that EA has an analgesic effect associated with TRPV1 downregulation. We provide novel evidence that these inflammatory mediators can modulate the TRPV1 signaling pathway and suggest new potential therapeutic targets for fibromyalgia pain.


2019 ◽  
Vol 33 (12) ◽  
pp. 1491-1500 ◽  
Author(s):  
In-Jee You ◽  
Sa-Ik Hong ◽  
Shi-Xun Ma ◽  
Thi-Lien Nguyen ◽  
Seung-Hwan Kwon ◽  
...  

Purpose: The transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that mediates synaptic modification in the nucleus accumbens (NAc). However, no study has yet examined the mechanism of TRPV1 in the NAc on cocaine reinstatement. We investigated the mechanism of TRPV1 in NAc on cocaine reinstatement using the conditioned place preference (CPP) test in mice. Methods: We examined the effect of capsazepine (5 mg/kg, a TRPV1 antagonist, administered intraperitoneally (i.p.)), capsaicin (0.3 mg/kg, a TRPV1 agonist, administered i.p.), and genetic deletion of TRPV1 on the reinstatement of cocaine-induced CPP (15 mg/kg, administered i.p.). The expression of TRPV1 and Ca2+/calmodulin-mediated kinase II (CaMKII) in the NAc were determined after cocaine reinstatement. Microinjection of SB366791 (0.2 ng, a selective TRPV1 antagonist) in the NAc was assessed on SKF-81297 (1 µg, D1-like dopamine (DA) receptor agonist) primed cocaine reinstatement. Results: Capsazepine suppressed and capsaicin potentiated cocaine CPP in the reinstatement phase. In addition, genetic deletion of TRPV1 inhibited cocaine-priming reinstatement. Cocaine reinstatement was mediated by increased TRPV1 expression in the NAc, which involves CaMKII. Microinjection of SB366791 in the NAc prevented the cocaine reinstatement evoked by microinjection of SKF-81297 in the NAc. Conclusions: These findings suggest that activation of TRPV1 mediates the stimulation of D1-like DA receptors and CaMKII in the NAc, resulting in the facilitation of cocaine reinstatement behaviors. Thus, our findings reveal a previously unknown TRPV1 mechanism in the reinstatement to drugs of abuse.


2021 ◽  
Vol 22 (7) ◽  
pp. 3712
Author(s):  
Eva Uchytilova ◽  
Diana Spicarova ◽  
Jiri Palecek

Transient receptor potential vanilloid 1 (TRPV1) channels contribute to the development of several chronic pain states and represent a possible therapeutic target in many painful disease treatment. Proinflammatory mediator bradykinin (BK) sensitizes TRPV1, whereas noxious peripheral stimulation increases BK level in the spinal cord. Here, we investigated the involvement of spinal TRPV1 in thermal and mechanical hypersensitivity, evoked by intrathecal (i.t.) administration of BK and an endogenous agonist of TRPV1, N-oleoyldopamine (OLDA), using behavioral tests and i.t. catheter implantation, and administration of BK-induced transient thermal and mechanical hyperalgesia and mechanical allodynia. All these hypersensitive states were enhanced by co-administration of a low dose of OLDA (0.42 µg i.t.), which was ineffective only under the control conditions. Intrathecal pretreatment with TRPV1 selective antagonist SB366791 prevented hypersensitivity induced by i.t. co-administration of BK and OLDA. Our results demonstrate that both thermal and mechanical hypersensitivity evoked by co-administration of BK and OLDA is mediated by the activation of spinal TRPV1 channels.


2017 ◽  
Vol 35 (3) ◽  
pp. 602-611 ◽  
Author(s):  
Sheryl E. Koch ◽  
Adrien Mann ◽  
Shannon Jones ◽  
Nathan Robbins ◽  
Abdullah Alkhattabi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document