Application of focused ion-beam sampling for sidewall-roughness measurement of free-standing sub-μm objects by atomic force microscopy

Microscopy ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 11-16
Author(s):  
Takaharu Nagatomi ◽  
Tatsuya Nakao ◽  
Yoko Fujimoto

Abstract In the present study, a free-standing object-sampling technique for microelectromechanical systems (MEMS) is developed to measure their sidewall surface roughnesses by atomic force microscopy (AFM). For this purpose, a conventional focused ion beam (FIB) sampling technique widely used for cross-sectional transmission electron microscope specimen preparation was applied. The sub-nm-order roughness parameters were quantitatively measured for sidewalls of Si-bridge test samples. The roughness parameters were compared before and after H2 annealing treatment, which induced smoothing of the surface by migration of the Si atoms. The reduction in the surface roughness by a factor of approximately one-third with 60-s H2 annealing was quantitatively evaluated by AFM. The present study confirms that the developed FIB–AFM technique is one potential approach for quantitatively evaluating the surface-roughness parameters on the oblique faces of free-standing objects in MEMS devices.

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Christian Girginov ◽  
Stephan Kozhukharov

Breakdown phenomena are investigated at continuous isothermal (20∘C) and galvanostatic (0.2–5 mA cm−2) anodizing of aluminum in ammonium salicylate in dimethylformamide (1 M AS/DMF) electrolyte. From the kinetic -curves, the breakdown voltage () values are estimated, as well as the frequency and amplitude of oscillations of formation voltage () at different current densities. The surface of the aluminum specimens was studied using atomic force microscopy (AFM). Data on topography and surface roughness parameters of the electrode after electric breakdowns are obtained as a function of anodization time. The electrode surface of anodic films, formed with different current densities until the same charge density has passed (2.5 C cm−2), was assessed. Results are discussed on the basis of perceptions of avalanche mechanism of the breakdown phenomena, due to the injection of electrons and their multiplication in the volume of the film.


2005 ◽  
Vol 38 (6) ◽  
pp. 2368-2375 ◽  
Author(s):  
Nick Virgilio ◽  
Basil D. Favis ◽  
Marie-France Pépin ◽  
Patrick Desjardins ◽  
Gilles L'Espérance

2021 ◽  
Vol 2086 (1) ◽  
pp. 012204
Author(s):  
D J Rodriguez ◽  
A V Kotosonova ◽  
H A Ballouk ◽  
N A Shandyba ◽  
O I Osotova ◽  
...  

Abstract In this work, we carried out an investigation of commercial atomic force microscope (AFM) probes for contact and semi-contact modes, which were modified by focused ion beam (FIB). This method was used to modify the original tip shape of silicon AFM probes, by ion-etching and ion-enhance gas deposition. we show a better performance of the FIB-modified probes in contrast with the non-modified commercial probes. These results were obtained after using both probes in semi-contact mode in a calibration grating sample.


Author(s):  
C. Mathew Mate ◽  
Robert W. Carpick

When two surfaces are brought into contact, they first touch where the summits of the surface asperities make contact. Consequently, surface roughness or topography strongly influences those physical phenomena associated with contact: friction, adhesion, and wear. This chapter discusses techniques for measuring the roughness of surfaces and the parameters frequently used to characterize this roughness. As atomic force microscopy (AFM) and optical interferometry are currently the predominant tools for characterizing roughness, these techniques are discussed at some length. Examples are given for determining not only the standard roughness parameters (the standard deviation of surface heights, the mean radius of curvature of asperity summits, waviness, and the average and rms of surface heights), but also for determining the surface roughness power spectrum, which has gained importance in recent tribology theories. The topography of self-affine fractal surfaces is also discussed along with the tribological importance of these surfaces.


Author(s):  
C. S. Han ◽  
Y. H. Yoon ◽  
Y. H. Shin ◽  
J. W. Song

We report the structural modification of carbon nanotube (CNT) tip for Atomic force microscopy (SPM) based on ion beam irradiation. In general, CNT tip assembled by dielectrophoresis would often have non-vertical angle, very crooked shape or too lengthy one. Therefore, these tips should be modified to the appropriate shape to use as an AFM tip. We found that the ion beam could contribute to merge the bundled CNTs, to make the CNT diameter uniform as well as to make the wavy shape of CNT straight. In addition, we could cut the free-standing CNT on a Si tip using focused ion beam (FIB). From the atomic force microscope (AFM) measurement of 15 nm gold particles and DNA molecules, we showed that the CNT tip modified by FIB produced high resolution images as well as little wear by comparing with those of a conventional silicon tip


2009 ◽  
Vol 76-78 ◽  
pp. 497-501 ◽  
Author(s):  
Zong Wei Xu ◽  
Feng Zhou Fang ◽  
Xiao Tang Hu

Carbon nanotube (CNT) probe used in atomic force microscopy (AFM) was fabricated by using electron beam induced Pt deposition method. The bonding force for CNT probe was found to be larger than 500nN. The nanotube probe’s length was shortened by focused ion beam milling process. It is confirmed that the CNT probe shows higher aspect ratio than the Si probe. The nanotube probes with fullerene-like cap end present higher imaging resolution than those with open end.


Sign in / Sign up

Export Citation Format

Share Document