scholarly journals Fabrication of probe tips via the FIB method for nanodiagnostics of the surface of solids by atomic force microscopy

2021 ◽  
Vol 2086 (1) ◽  
pp. 012204
Author(s):  
D J Rodriguez ◽  
A V Kotosonova ◽  
H A Ballouk ◽  
N A Shandyba ◽  
O I Osotova ◽  
...  

Abstract In this work, we carried out an investigation of commercial atomic force microscope (AFM) probes for contact and semi-contact modes, which were modified by focused ion beam (FIB). This method was used to modify the original tip shape of silicon AFM probes, by ion-etching and ion-enhance gas deposition. we show a better performance of the FIB-modified probes in contrast with the non-modified commercial probes. These results were obtained after using both probes in semi-contact mode in a calibration grating sample.

2005 ◽  
Vol 38 (6) ◽  
pp. 2368-2375 ◽  
Author(s):  
Nick Virgilio ◽  
Basil D. Favis ◽  
Marie-France Pépin ◽  
Patrick Desjardins ◽  
Gilles L'Espérance

2009 ◽  
Vol 76-78 ◽  
pp. 497-501 ◽  
Author(s):  
Zong Wei Xu ◽  
Feng Zhou Fang ◽  
Xiao Tang Hu

Carbon nanotube (CNT) probe used in atomic force microscopy (AFM) was fabricated by using electron beam induced Pt deposition method. The bonding force for CNT probe was found to be larger than 500nN. The nanotube probe’s length was shortened by focused ion beam milling process. It is confirmed that the CNT probe shows higher aspect ratio than the Si probe. The nanotube probes with fullerene-like cap end present higher imaging resolution than those with open end.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
N. Mahmoodi ◽  
A. Sabouri ◽  
J. Bowen ◽  
C. J. Anthony ◽  
P. M. Mendes

The reference cantilever method is shown to act as a direct and simple method for determination of torsional spring constant. It has been applied to the characterization of micropaddle structures similar to those proposed for resonant functionalized chemical sensors and resonant thermal detectors. It is shown that this method can be used as an effective procedure to characterize a key parameter of these devices and would be applicable to characterization of other similar MEMS/NEMS devices such as micromirrors. In this study, two sets of micropaddles are manufactured (beams at centre and offset by 2.5 μm) by using LPCVD silicon nitride as a substrate. The patterning is made by direct milling using focused ion beam. The torsional spring constant is achieved through micromechanical analysis via atomic force microscopy. To obtain the gradient of force curve, the area of the micropaddle is scanned and the behaviour of each pixel is investigated through an automated developed code. The experimental results are in a good agreement with theoretical results.


Microscopy ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 11-16
Author(s):  
Takaharu Nagatomi ◽  
Tatsuya Nakao ◽  
Yoko Fujimoto

Abstract In the present study, a free-standing object-sampling technique for microelectromechanical systems (MEMS) is developed to measure their sidewall surface roughnesses by atomic force microscopy (AFM). For this purpose, a conventional focused ion beam (FIB) sampling technique widely used for cross-sectional transmission electron microscope specimen preparation was applied. The sub-nm-order roughness parameters were quantitatively measured for sidewalls of Si-bridge test samples. The roughness parameters were compared before and after H2 annealing treatment, which induced smoothing of the surface by migration of the Si atoms. The reduction in the surface roughness by a factor of approximately one-third with 60-s H2 annealing was quantitatively evaluated by AFM. The present study confirms that the developed FIB–AFM technique is one potential approach for quantitatively evaluating the surface-roughness parameters on the oblique faces of free-standing objects in MEMS devices.


Sign in / Sign up

Export Citation Format

Share Document