scholarly journals Erratum for Sun et al. Amyotrophy Induced by a High-Fat Diet Is Closely Related to Inflammation and Protein Degradation Determined by Quantitative Phosphoproteomic Analysis in Skeletal Muscle of C57BL/6J Mice. J Nutr 2020;150:294–302

2020 ◽  
Vol 150 (6) ◽  
pp. 1671-1671
2019 ◽  
Vol 150 (2) ◽  
pp. 294-302
Author(s):  
Ya-nan Sun ◽  
Jia-qiang Huang ◽  
Zhong-zhou Chen ◽  
Min Du ◽  
Fa-zheng Ren ◽  
...  

ABSTRACT Background Ectopic fat accumulation in skeletal muscle results in dysfunction and atrophy, but the underlying molecular mechanisms remain unclear. Objective The aim of this study was to investigate the effects of a high-fat diet (HFD) in modulating the structure and energy metabolism of skeletal muscle and the underlying mechanisms in mice. Methods Four-week-old male C57BL/6 J mice (n = 30) were allowed 1 wk for acclimatization. After 6 mice with low body weight were removed from the study, the remaining 24 mice were fed with a normal-fat diet (NFD; 10% energy from fat, n = 12) or an HFD (60% energy from fat, n = 12) for 24 wk. At the end of the experiment, serum glucose and lipid concentrations were measured, and skeletal muscle was collected for atrophy analysis, inflammation measurements, and phosphoproteomic analysis. Results Compared with the NFD, the HFD increased (P < 0.05) body weight (35.8%), serum glucose (64.5%), and lipid (27.3%) concentrations, along with elevated (P < 0.05) expressions of the atrophy-related proteins muscle ring finger 1 (MURF1; 27.6%) and muscle atrophy F-box (MAFBX; 44.5%) in skeletal muscle. Phosphoproteomic analysis illustrated 64 proteins with differential degrees of phosphorylation between the HFD and NFD groups. These proteins were mainly involved in modulating cytoskeleton [adenylyl cyclase-associated protein 2 (CAP2) and actin-α skeletal muscle (ACTA1)], inflammation [NF-κB-activating protein (NKAP) and serine/threonine-protein kinase RIO3 (RIOK3)], glucose metabolism [Cdc42-interacting protein 4 (TRIP10); protein kinase C, and casein kinase II substrate protein 3 (PACSIN3)], and protein degradation [heat shock protein 90 kDa (HSP90AA1)]. The HFD-induced inhibitions of the insulin signaling pathway and activations of inflammation in skeletal muscle were verified by Western blot analysis. Conclusions Quantitative phosphoproteomic analysis in C57BL/6 J mice fed an NFD or HFD for 24 wk revealed that the phosphorylation of inflammatory proteins and proteins associated with glucose metabolism at specific serine residues may play critical roles in the regulation of skeletal muscle atrophy induced by an HFD. This work provides information regarding underlying molecular mechanisms for inflammation-induced dysfunction and atrophy in skeletal muscle.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anandini Swaminathan ◽  
Andrej Fokin ◽  
Tomas Venckūnas ◽  
Hans Degens

AbstractMethionine restriction (MR) has been shown to reduce the age-induced inflammation. We examined the effect of MR (0.17% methionine, 10% kCal fat) and MR + high fat diet (HFD) (0.17% methionine, 45% kCal fat) on body mass, food intake, glucose tolerance, resting energy expenditure, hind limb muscle mass, denervation-induced atrophy and overload-induced hypertrophy in young and old mice. In old mice, MR and MR + HFD induced a decrease in body mass. Muscle mass per body mass was lower in old compared to young mice. MR restored some of the HFD-induced reduction in muscle oxidative capacity. The denervation-induced atrophy of the m. gastrocnemius was larger in animals on MR than on a control diet, irrespective of age. Old mice on MR had larger hypertrophy of m. plantaris. Irrespective of age, MR and MR + HFD had better glucose tolerance compared to the other groups. Young and old mice on MR + HFD had a higher resting VO2 per body mass than HFD group. Mice on MR and MR + HFD had a resting respiratory quotient closer to 0.70, irrespective of age, indicating an increased utilization of lipids. In conclusion, MR in combination with resistance training may improve skeletal muscle and metabolic health in old age even in the face of obesity.


2021 ◽  
Vol 91 ◽  
pp. 108598
Author(s):  
Diego Hernández-Saavedra ◽  
Laura Moody ◽  
Xinyu Tang ◽  
Zachary J. Goldberg ◽  
Alex P. Wang ◽  
...  

Author(s):  
Ambreen Asghar ◽  
Tasleem Akhtar ◽  
Tayyeba Batool ◽  
Muhammad Babar Khawar ◽  
Sania Nadeem ◽  
...  

Cytokine ◽  
2021 ◽  
Vol 146 ◽  
pp. 155638
Author(s):  
Masoume Aliabadi ◽  
Fahimeh Zamani-Garmsiri ◽  
Ghodratollah Panahi ◽  
Sadra Samavarchi Tehrani ◽  
Reza Meshkani

Sign in / Sign up

Export Citation Format

Share Document