Metformin in combination with genistein ameliorates skeletal muscle inflammation in high-fat diet fed c57BL/6 mice

Cytokine ◽  
2021 ◽  
Vol 146 ◽  
pp. 155638
Author(s):  
Masoume Aliabadi ◽  
Fahimeh Zamani-Garmsiri ◽  
Ghodratollah Panahi ◽  
Sadra Samavarchi Tehrani ◽  
Reza Meshkani
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ngoc Hoan Le ◽  
Chu-Sook Kim ◽  
Thai Hien Tu ◽  
Hye-Sun Choi ◽  
Byung-Sam Kim ◽  
...  

Obesity-induced skeletal muscle inflammation is characterized by increased macrophage infiltration and inflammatory cytokine production. In this study, we investigated whether 4-1BB, a member of the TNF receptor superfamily (TNFRSF9) that provides inflammatory signals, participates in obesity-induced skeletal muscle inflammation. Expression of the 4-1BB gene, accompanied by increased levels of inflammatory cytokines, was markedly upregulated in the skeletal muscle of obese mice fed a high-fat diet, in muscle cells treated with obesity factors, and in cocultured muscle cells/macrophages. In vitro stimulation of 4-1BB with agonistic antibody increased inflammatory cytokine levels in TNFα-pretreated muscle cells, and this effect was absent in cells derived from 4-1BB-deficient mice. Conversely, disruption of the interaction between 4-1BB and its ligand (4-1BBL) with blocking antibody decreased the release of inflammatory cytokines from cocultured muscle cells/macrophages. Moreover, deficiency of 4-1BB markedly reduced macrophage infiltration and inflammatory cytokine production in the skeletal muscle of mice fed a high-fat diet. These findings indicate that 4-1BB mediates the inflammatory responses in obese skeletal muscle by interacting with its ligand 4-1BBL on macrophages. Therefore, 4-1BB and 4-1BBL may be useful targets for prevention of obesity-induced inflammation in skeletal muscle.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anandini Swaminathan ◽  
Andrej Fokin ◽  
Tomas Venckūnas ◽  
Hans Degens

AbstractMethionine restriction (MR) has been shown to reduce the age-induced inflammation. We examined the effect of MR (0.17% methionine, 10% kCal fat) and MR + high fat diet (HFD) (0.17% methionine, 45% kCal fat) on body mass, food intake, glucose tolerance, resting energy expenditure, hind limb muscle mass, denervation-induced atrophy and overload-induced hypertrophy in young and old mice. In old mice, MR and MR + HFD induced a decrease in body mass. Muscle mass per body mass was lower in old compared to young mice. MR restored some of the HFD-induced reduction in muscle oxidative capacity. The denervation-induced atrophy of the m. gastrocnemius was larger in animals on MR than on a control diet, irrespective of age. Old mice on MR had larger hypertrophy of m. plantaris. Irrespective of age, MR and MR + HFD had better glucose tolerance compared to the other groups. Young and old mice on MR + HFD had a higher resting VO2 per body mass than HFD group. Mice on MR and MR + HFD had a resting respiratory quotient closer to 0.70, irrespective of age, indicating an increased utilization of lipids. In conclusion, MR in combination with resistance training may improve skeletal muscle and metabolic health in old age even in the face of obesity.


2021 ◽  
Vol 91 ◽  
pp. 108598
Author(s):  
Diego Hernández-Saavedra ◽  
Laura Moody ◽  
Xinyu Tang ◽  
Zachary J. Goldberg ◽  
Alex P. Wang ◽  
...  

Author(s):  
Ambreen Asghar ◽  
Tasleem Akhtar ◽  
Tayyeba Batool ◽  
Muhammad Babar Khawar ◽  
Sania Nadeem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document