Growth, phenology and N-utilization by invasive populations of Gunnera tinctoria

2020 ◽  
Vol 13 (5) ◽  
pp. 589-600
Author(s):  
Maurício Cruz Mantoani ◽  
Alberto Benavent González ◽  
Leopoldo García Sancho ◽  
Bruce Arthur Osborne

Abstract Aims Gunnera tinctoria is an unusual N-fixing plant species that has become invasive worldwide, generally in environments with a low evaporative demand and/or high rainfall. Amongst the many mechanisms that may explain its success as an introduced species, a contrasting phenology could be important but this may depend on an ability to grow and utilize nutrients under sub-optimal conditions. We examined whether G. tinctoria has an advantage in terms of a contrasting phenology and N-fixing capability, in comparisons with Juncus effusus, the native species most impacted by G. tinctoria invasions. Methods We made phenological assessments on a weekly or bi-weekly basis on long-established populations on Achill Island, Ireland, during 2016–2017. Data on leaf and inflorescence number, total leaf area, light interception and above-ground biomass were collected alongside measurements of soil temperature, moisture and oxidation–reduction potential. The significance of N-fixing ability for supporting seasonal growth was assessed using δ 15N isotopic assessments, together with in situ acetylene reduction measurements. Important Findings The timing of the initiation of growth of G. tinctoria and J. effusus varied between 2016 and 2017, with the earlier emergence and expansion of leaves of G. tinctoria, and the largest above-ground biomass associated with higher water availability. The early growth of G. tinctoria was dependent on preformed structures, with maximum canopy development occurring in late May, prior to that of J. effusus. Whilst N-fixation was observed in March, this made a more significant contribution to growth during the later stages of canopy development. Based on δ 15N isotopic analyses, early growth was predominantly associated with N-remobilization from the rhizomes, whilst seedlings were largely reliant on N-fixation. This emphasizes the importance of nutrient mobilization for early growth and shows that the importance of an N-fixing capability may vary developmentally, as well as during different stages of the invasion process.

2002 ◽  
Vol 42 (6) ◽  
pp. 717 ◽  
Author(s):  
R. A. Sudmeyer ◽  
P. R. Scott

This paper, which is the second in a series of three, describes dryland crop growth and yields in a windbreak bay in south-western Australia and relates changes to microclimate modification by the windbreaks. Over the 4 years of this trial, above ground biomass and the development rate of crops 3–20 times the tree height from the windbreak (H) were similar to crops growing in unsheltered conditions (more than 20 H from the windbreaks). Grain yield was 16–30% higher between 3 H and 20 H than at more than 20 H in 1994, the driest year on record for the district, in other years yield was largely unchanged. In contrast, above ground biomass growth was consistently less within 3 H than further from the windbreaks and grain yield within 3 H was 19–27% less than unsheltered yield. Water use by the trees is the most likely cause of reduced yield within 3 H. Over the 4 years, mean grain yield between 0.5 H and 20 H was 3.8% greater than yield at more than 20 H. This increase was largely due to the yield increase in 1994. As 5.4% of the paddock was directly occupied by, or uncropped next to, the windbreaks, there was a net yield decrease of 2.8% over 4 years compared to estimated production from a similar area with no windbreaks. The principle benefits of the windbreaks were reducing evaporative demand in extremely dry years and protection against extreme wind events. These benefits must be weighed against the costs of establishing and maintaining windbreak systems.


2013 ◽  
Vol 61 (1) ◽  
pp. 73 ◽  
Author(s):  
John T. Hunter

Dense Callitris endlicheri (Parl.) F.M.Bailey (black cypress pine) and C. glaucophylla Joy Thomps. & L.A.S.Johnson (white cypress pine) stands are often viewed as problematic and thinning is often encouraged from a biodiversity perspective. In the present investigation, canonical correspondence analyses (CCAs) of 997 survey sites were undertaken within the public and private reserve network that contains a variety of above-ground biomass (AGB) of C. endlicheri and C. glaucophylla (as measured by diameter at breast height (DBH) and dispersion) and the evenness of the species distribution was undertaken. This was done to further dissect the effect of Callitris AGB on species density (richness per quadrat) of native and introduced species and on broad life-form groupings. Other landscape features such as altitude, physiography, drainage and soil depth were also included in analyses. C. endlicheri and C. glaucophylla grow in different biophysical locations in most instances and this was reflected in the results of the study. No level of AGB or clumping of C. endlicheri was found to affect species density of native or introduced taxa or the distribution of life-forms. Increasing AGB of C. glaucophylla had a positive effect on native species density. The species density of introduced taxa was also increased with an increase in C. glaucophylla AGB. The distribution of life-forms was significantly affected by an increase in Callitris AGB with a decrease in trees, shrubby taxa and hemi-parasites, although herbaceous species had a concomitant increase in number. There is no reason to thin dense Callitris stands to increase local species richness. However, because the distribution of life-form types is significantly affected by C. glaucophylla, there is a need to understand what is occurring in species replacements and what landscape mosaic of structural types is required for this species. It is likely that dense stands of Callitris are important, along with a variety of stand densities so as to maintain the highest regional diversity.


2014 ◽  
Vol 60 (No. 5) ◽  
pp. 221-227 ◽  
Author(s):  
J. Křen ◽  
K. Klem ◽  
I. Svobodová ◽  
P. Míša ◽  
L. Neudert

Timely and reliable prediction of grain yield and quality of spring barley represents a key prerequisite for effective crop management. Within this study we evaluated the relationships between yield components, grain quality, biomass production and the number of tillers in different growth stages. For this purpose, in three years (2011–2013) multifactorial field trials focused on the combined effects of cultivar, sowing density and nitrogen nutrition were conducted. Based on ANOVA it was found that the formation of grain yield was affected by individual factors in the following order of importance: year, nitrogen, cultivar and sowing rate. The final grain yield significantly correlated both with the number of tillers and dry weight of above-ground biomass per unit area. The best estimation of yield provided both parameters at early growth stage (R = 0.83** and 0.81** for number of tillers and the above-ground biomass at BBCH 25). The grain protein content was inversely related to early growth parameters (R = –0.64** and –0.41** for number of tillers and above-ground biomass at BBCH 25). Based on the comparison of relationships between the years, it can be concluded that the early growth of barley and tiller differentiation is a key parameter for the formation of yield and grain quality.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
AFSHAN ANJUM BABA ◽  
SYED NASEEM UL-ZAFAR GEELANI ◽  
ISHRAT SALEEM ◽  
MOHIT HUSAIN ◽  
PERVEZ AHMAD KHAN ◽  
...  

The plant biomass for protected areas was maximum in summer (1221.56 g/m2) and minimum in winter (290.62 g/m2) as against grazed areas having maximum value 590.81 g/m2 in autumn and minimum 183.75 g/m2 in winter. Study revealed that at Protected site (Kanidajan) the above ground biomass ranged was from a minimum (1.11 t ha-1) in the spring season to a maximum (4.58 t ha-1) in the summer season while at Grazed site (Yousmarag), the aboveground biomass varied from a minimum (0.54 t ha-1) in the spring season to a maximum of 1.48 t ha-1 in summer seasonandat Seed sown site (Badipora), the lowest value of aboveground biomass obtained was 4.46 t ha-1 in spring while as the highest (7.98 t ha-1) was obtained in summer.


2016 ◽  
Vol 13 (11) ◽  
pp. 3343-3357 ◽  
Author(s):  
Zun Yin ◽  
Stefan C. Dekker ◽  
Bart J. J. M. van den Hurk ◽  
Henk A. Dijkstra

Abstract. Observed bimodal distributions of woody cover in western Africa provide evidence that alternative ecosystem states may exist under the same precipitation regimes. In this study, we show that bimodality can also be observed in mean annual shortwave radiation and above-ground biomass, which might closely relate to woody cover due to vegetation–climate interactions. Thus we expect that use of radiation and above-ground biomass enables us to distinguish the two modes of woody cover. However, through conditional histogram analysis, we find that the bimodality of woody cover still can exist under conditions of low mean annual shortwave radiation and low above-ground biomass. It suggests that this specific condition might play a key role in critical transitions between the two modes, while under other conditions no bimodality was found. Based on a land cover map in which anthropogenic land use was removed, six climatic indicators that represent water, energy, climate seasonality and water–radiation coupling are analysed to investigate the coexistence of these indicators with specific land cover types. From this analysis we find that the mean annual precipitation is not sufficient to predict potential land cover change. Indicators of climate seasonality are strongly related to the observed land cover type. However, these indicators cannot predict a stable forest state under the observed climatic conditions, in contrast to observed forest states. A new indicator (the normalized difference of precipitation) successfully expresses the stability of the precipitation regime and can improve the prediction accuracy of forest states. Next we evaluate land cover predictions based on different combinations of climatic indicators. Regions with high potential of land cover transitions are revealed. The results suggest that the tropical forest in the Congo basin may be unstable and shows the possibility of decreasing significantly. An increase in the area covered by savanna and grass is possible, which coincides with the observed regreening of the Sahara.


2021 ◽  
Vol 21 ◽  
pp. 100462
Author(s):  
Sadhana Yadav ◽  
Hitendra Padalia ◽  
Sanjiv K. Sinha ◽  
Ritika Srinet ◽  
Prakash Chauhan

2020 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Negar Tavasoli ◽  
Hossein Arefi

Assessment of forest above ground biomass (AGB) is critical for managing forest and understanding the role of forest as source of carbon fluxes. Recently, satellite remote sensing products offer the chance to map forest biomass and carbon stock. The present study focuses on comparing the potential use of combination of ALOSPALSAR and Sentinel-1 SAR data, with Sentinel-2 optical data to estimate above ground biomass and carbon stock using Genetic-Random forest machine learning (GA-RF) algorithm. Polarimetric decompositions, texture characteristics and backscatter coefficients of ALOSPALSAR and Sentinel-1, and vegetation indices, tasseled cap, texture parameters and principal component analysis (PCA) of Sentinel-2 based on measured AGB samples were used to estimate biomass. The overall coefficient (R2) of AGB modelling using combination of ALOSPALSAR and Sentinel-1 data, and Sentinel-2 data were respectively 0.70 and 0.62. The result showed that Combining ALOSPALSAR and Sentinel-1 data to predict AGB by using GA-RF model performed better than Sentinel-2 data.


Sign in / Sign up

Export Citation Format

Share Document