Responses of morphological and physiological traits to herbivory by snails of three invasive and native submerged plants

2021 ◽  
Author(s):  
Xiaolong Huang ◽  
Jinlei Yu ◽  
Baohua Guan ◽  
Hongmin Xie ◽  
Shuailing Liu ◽  
...  

Abstract Aims The submerged plant species Carolina fanwort (Cabomba caroliniana) has become a dominant invasive aquatic plant in the Lake Taihu Basin (LTB) in China. Introduced species may escape their original specialist enemies and encounter fewer enemies in their new environment. They were assumed to have suffered less herbivory than native species as they are relatively unpalatable (the enemy release hypothesis (ERH)). The objective of this study was to compare the responses of C. caroliniana with those of co-occurring native species to herbivory from native herbivores. Methods We conducted a mesocosm experiment to record the responses of C. caroliniana and two commonly co-occurring native submerged plant counterparts, water thyme (Hydrilla verticillata) and Eurasian watermilfoil (Myriophyllum spicatum), to herbivory by two native generalist gastropod snails, Radix swinhoei and Sinotaia quadrata. Plant morphological traits (total biomass, shoot/root (S/R) biomass ratio and relative growth rate (RGR)) and physiological traits (leaf total nonstructural carbohydrate (TNC), lignin, and cellulose) were recorded. Important Findings The snail S. quadrata rarely influenced the plant traits of the three submerged plants. With the increasing numbers of R. swinhoei treatments, most of the plant traits of H. verticillata and M. spicatum changed, while those of C. caroliniana showed a relatively stable fluctuation. This result indicates that C. caroliniana is more resistant to herbivory by the snail R. swinhoei, which is consistent with the ERH hypothesis. This finding indicates that herbivorous snail species contributes to the invasion of C. caroliniana, which potentially alters the species composition of submerged plants in the plant community.

Author(s):  
Xiaolong Huang ◽  
Jinlei Yu ◽  
Shuailing Liu ◽  
Hongmin Xie ◽  
Hu He ◽  
...  

The submerged species Carolina fanwort (Cabomba caroliniana) has attracted considerable attention in Lake Taihu Basin (LTB), China. This species was widely used as a garden plant until 2016, when it was identified as invasive. In this study, we conducted a mesocosm experiment to compare the morphological traits, includingtotal dry mass, shoot/root (S/R) ratio, relative growth rate (RGR) and competition index log response ratio (ln RR), of C. caroliniana and two frequently co-occurring native submerged plants, water thyme (Hydrilla verticillata) and Eurasian watermilfoil (Myriophyllum spicatum). The results demonstrated that C. caroliniana did not show more advantageous traits (higher total dry mass, S/R ratio and RGR) or have a lower ln RR than H. verticillata or M. spicatum. We provide a counterexample to commonly accepted thought in which the successful invasion of invasive species may not be explained by outcompeting native plants. Other biotic or abiotic factors that determine the successful invasion of C. caroliniana must be studied further.


Author(s):  
Wojciech Ejankowski ◽  
Tomasz Lenard

<p>The physicochemical parameters of water, the concentration of chlorophyll-<em>a</em> and the submerged aquatic vegetation (SAV) were studied to evaluate the effects of different winter seasons on the biomass of macrophytes in shallow eutrophic lakes. We hypothesised that a lack of ice cover or early ice-out can influence the physicochemical parameters of water and thus change the conditions for the development of phytoplankton and SAV. The studies were conducted in four lakes of the Western Polesie region in mid-eastern Poland after mild winters with early ice-out (MW, 2011 and 2014) and after cold winters with late ice-out (CW, 2010, 2012 and 2013). The concentrations of soluble and total nitrogen, chlorophyll-<em>a</em> and the TN:TP ratio in the lakes were considerably higher, whereas the concentration of soluble and total phosphorus and water transparency were significantly lower after the MW compared with after the CW. No differences were found in water temperature, reaction and electrolytic conductivity. Low water turbidity linked with low concentration of chlorophyll-<em>a</em> after the CW resulted in increased water transparency and the total biomass of the SAV. The negative effect of the MW on the macrophyte species was stronger on more sensitive species (<em>Myriophyllum spicatum</em>,<em> Stratiotes aloides</em>) compared with shade tolerant <em>Ceratophyllum demersum</em>. Our findings show that the ice cover phenology affected by climate warming can change the balance between phytoplankton and benthic vegetation in shallow eutrophic lakes, acting as a shift between clear and turbid water states. We speculate that various responses of macrophyte species to changes in the water quality after two winter seasons (CW and MW) could cause alterations in the vegetation biomass, particularly the expansion of shade tolerance and the decline of light-demanding species after a series of mild winters.</p>


2021 ◽  
Author(s):  
Olaniyi O Ajala ◽  
Kathryn R Kidd ◽  
Brian P Oswald ◽  
Yuhui Weng ◽  
Jeremy P Stovall

Abstract A greenhouse experiment was designed to determine the interactive effect of light, flooding, and competition on the growth and performance of Chinese tallow (Triadica sebifera [L.] Roxb.) and three tree species native to the southeastern United States: water tupelo (Nyssa aquatica L.), sugarberry (Celtis occidentalis L.), and green ash (Fraxinus pennsylvanica Marshall). The experiment used a factorial design that received two treatments: light (low irradiance or high irradiance) and flood (nonflooded and flooded) regimes. In the nonflooded and high irradiance treatment, changes in the growth (ground diameter, number of leaves, and total biomass) indicated that growth metrics of tallow were highest when growing with sugarberry and water tupelo but decreased when tallow was in competition with green ash. In contrast, competition with tallow reduced the height, net photosynthetic rate, stomatal conductance, and transpiration rate of water tupelo. The results showed that tallow had lower growth metrics when in competition with green ash at no apparent decrease in the growth of green ash except for growth rate. Our results suggest that tallow may be less competitive with certain native species and underplanting may be a possible opportunity for improving the success rates of native trees species establishment in areas prone to tallow invasion. Study Implications: Chinese tallow is a highly invasive tree species in the southeastern coastal states and in this study, we examined the growth and survival of tallow in competition with tree species native to the southeastern coastal states, USA. The growth of tallow differed greatly among native species in well-drained environments lacking forest overstory with lower growth metrics when grown with green ash but higher growth metrics when grown with water tupelo and sugarberry. Following density reduction treatments, we recommend management actions that promote the regeneration of native tree species to occupy the open vegetation canopy and suppress reestablishment of tallow.


Author(s):  
Tian Lv ◽  
Xin Guan ◽  
Shufeng Fan ◽  
Chunhua Liu

The relationship between producers (e.g., macrophyte, phytoplankton and epiphytic algae) and snails plays an important role in maintaining the function and stability of the shallow ecosystems. A complex relationship exists among macrophytes, epiphytic algae, phytoplankton and snails. An outdoor mesocosm experiment with two-way factorials was carried out, three species submerged macrophytes (Hydrilla verticillate, Vallisneria natans or one exotic submerged plant Elodea nuttallii) and two grazing treatments (4 snail species present or absent) to elucidate those relationships. The results showed that the snail communities reducing the biomass of phytoplankton and epiphytic algae indirect then enhanced the growth of the submerged macrophytes. The macrophyte with complex architecture supported more snail and epiphytic algae, and snails preferred to feed on native plants. Competition drove snails change the grazing preferences to achieve coexistence, so that led to the assembling of snail communities towards the direction of highest resource utilization.


Diversity ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 162
Author(s):  
Michael R. Verhoeven ◽  
Wesley J. Glisson ◽  
Daniel J. Larkin

Potamogeton crispus (curlyleaf pondweed) and Myriophyllum spicatum (Eurasian watermilfoil) are widely thought to competitively displace native macrophytes in North America. However, their perceived competitive superiority has not been comprehensively evaluated. Coexistence theory suggests that invader displacement of native species through competitive exclusion is most likely where high niche overlap results in competition for limiting resources. Thus, evaluation of niche similarity can serve as a starting point for predicting the likelihood of invaders having direct competitive impacts on resident species. Across two environmental gradients structuring macrophyte communities—water depth and light availability—both P. crispus and M. spicatum are thought to occupy broad niches. For a third dimension, phenology, the annual growth cycle of M. spicatum is typical of other species, whereas the winter-ephemeral phenology of P. crispus may impart greater niche differentiation and thus lower risk of native species being competitively excluded. Using an unprecedented dataset comprising 3404 plant surveys from Minnesota collected using a common protocol, we modeled niches of 34 species using a probabilistic niche framework. Across each niche dimension, P. crispus had lower overlap with native species than did M. spicatum; this was driven in particular by its distinct phenology. These results suggest that patterns of dominance seen in P. crispus and M. spicatum have likely arisen through different mechanisms, and that direct competition with native species is less likely for P. crispus than M. spicatum. This research highlights the utility of fine-scale, abundance-based niche models for predicting invader impacts.


2020 ◽  
Vol 16 (8) ◽  
pp. 20200474 ◽  
Author(s):  
Christian L. Cox ◽  
Sean Alexander ◽  
Brianna Casement ◽  
Albert K. Chung ◽  
John David Curlis ◽  
...  

Introduced species can become invasive, damaging ecosystems and disrupting economies through explosive population growth. One mechanism underlying population expansion in invasive populations is ‘enemy release’, whereby the invader experiences relaxation of agonistic interactions with other species, including parasites. However, direct observational evidence of release from parasitism during invasion is rare. We mimicked the early stages of invasion by experimentally translocating populations of mite-parasitized slender anole lizards ( Anolis apletophallus ) to islands that varied in the number of native anoles. Two islands were anole-free prior to the introduction, whereas a third island had a resident population of Gaige's anole ( Anolis gaigei ). We then characterized changes in trombiculid mite parasitism over multiple generations post-introduction. We found that mites rapidly went extinct on one-species islands, but that lizards introduced to the two-species island retained mites. After three generations, the two-species island had the highest total density and biomass of lizards, but the lowest density of the introduced species, implying that the ‘invasion’ had been less successful. This field-transplant study suggests that native species can be ‘enemy reservoirs’ that facilitate co-colonization of ectoparasites with the invasive host. Broadly, these results indicate that the presence of intact and diverse native communities may help to curb invasiveness.


Botany ◽  
2012 ◽  
Vol 90 (12) ◽  
pp. 1284-1294 ◽  
Author(s):  
Zhong Qin ◽  
Dan Juan Mao ◽  
Guo Ming Quan ◽  
Jia-en Zhang ◽  
Jun Fang Xie ◽  
...  

Invasion by the exotic herb Ambrosia artemisiifolia L. has become a serious agricultural and environmental problem and of increasing research interest as the species continues its southward spread into subtropical regions of China. To better understand the possible physiological and morphological adaptations of A. artemisiifolia in this region, we conducted a greenhouse experiment using seedlings of A. artemisiifolia and a comparative native species, Urena lobata L. (Caesar’s weed), which is an erect annual shrub in the Malvaceae that commonly co-occurs with A. artemisiifolia in open, disturbed habitats in southern China. Seedlings of both plants were grown under four irradiance regimes (10%, 30%, 55%, and 100% irradiance) from 14 May to 13 July 2010. Ambrosia artemisiifolia showed significantly higher total biomass, total leaf area, specific leaf area, relative growth rate, and net assimilation rate but lower leaf mass fraction than U. lobata at the 30%–100% irradiance levels. With decreasing irradiance, A. artemisiifolia significantly increased biomass allocation to stems and decreased allocation to roots. Meanwhile, A. artemisiifolia exhibited higher light-saturated photosynthetic rates and light saturation points with wide variances except at the 10% irradiance treatment. These findings suggest that A. artemisiifolia has generally higher irradiance plasticity for traits pertaining to biomass partitioning, growth, and plant structure than U. lobata. The ability of A. artemisiifolia to tolerate high shade conditions while maintaining high growth rates at elevated irradiance levels may afford it a competitive advantage and may help explain its recent colonization and spread in southern China.


AoB Plants ◽  
2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Betsy von Holle ◽  
Sören E Weber ◽  
David M Nickerson

Abstract Plant species ranges are expected to shift in response to climate change, however, it is unclear how species interactions will affect range shifts. Because of the potential for enemy release of invasive nonnative plant species from species-specific soil pathogens, invasive plants may be able to shift ranges more readily than native plant species. Additionally, changing climatic conditions may alter soil microbial functioning, affecting plant–microbe interactions. We evaluated the effects of site, plant–soil microbe interactions, altered climate, and their interactions on the growth and germination of three congeneric shrub species, two native to southern and central Florida (Eugenia foetida and E. axillaris), and one nonnative invasive from south America (E. uniflora). We measured germination and biomass for these plant species in growth chambers grown under live and sterile soils from two sites within their current range, and one site in their expected range, simulating current (2010) and predicted future (2050) spring growing season temperatures in the new range. Soil microbes (microscopic bacteria, fungi, viruses and other organisms) had a net negative effect on the invasive plant, E. uniflora, across all sites and temperature treatments. This negative response to soil microbes suggests that E. uniflora’s invasive success and potential for range expansion are due to other contributing factors, e.g. higher germination and growth relative to native Eugenia. The effect of soil microbes on the native species depended on the geographic provenance of the microbes, and this may influence range expansion of these native species.


Author(s):  
Zhaoshi Wu ◽  
Ming Kong ◽  
Yamin Fan ◽  
Xiaolong Wang ◽  
Kuanyi Li

We investigated the characteristic of phytoplankton community structure across the entire Lake Taihu Basin (LTB), one of the most developed areas in China. A morphologically based functional group (MBFG) proposed by Kruk et al. (2010), especially potential toxic cyanobacteria (group III and VII), was also illustrated. Samples were collected at 96 sites along main rivers throughout the four seasons from September 2014 to January 2016. Significant differences in the phytoplankton community structure were observed at spatial (particularly between Huangpu/Tiaoxi and the other 4 river systems) and seasonal scales. On a spatial basis, high variability was observed in the mean phytoplankton biomass, with a relatively high value of 3.13 mg L−1 in Yanjiang system and a relatively low value in Huangpu (1.23 mg L−1) and Tiaoxi (1.44 mg L−1) systems. The mean biomass of potential toxic cyanobacteria accounted for 18.28% of the mean total biomass spatially, which was more abundant in Nanhe and Yanjiang systems. Spatial autocorrelation was weak for the total biomass and its four main components (bacillariophyta, chlorophyta, euglenophyta, and cyanobacteria) at whole basin scale regardless of season. Regarding the river system, significant autocorrelation was scarcely observed in all the river systems except Huangpu, especially in the inflows. The characteristic in terms of hydrological and environmental conditions may determine the community structure of the 6 river systems. Our study highlighted the importance of monitoring based on a large spatial scale, and more attention should be paid to potential toxic cyanobacteria for water quality management purposes.


Sign in / Sign up

Export Citation Format

Share Document