scholarly journals Plant morphological traits and competition index comparisons of three invasive and native submerged plants

Author(s):  
Xiaolong Huang ◽  
Jinlei Yu ◽  
Shuailing Liu ◽  
Hongmin Xie ◽  
Hu He ◽  
...  

The submerged species Carolina fanwort (Cabomba caroliniana) has attracted considerable attention in Lake Taihu Basin (LTB), China. This species was widely used as a garden plant until 2016, when it was identified as invasive. In this study, we conducted a mesocosm experiment to compare the morphological traits, includingtotal dry mass, shoot/root (S/R) ratio, relative growth rate (RGR) and competition index log response ratio (ln RR), of C. caroliniana and two frequently co-occurring native submerged plants, water thyme (Hydrilla verticillata) and Eurasian watermilfoil (Myriophyllum spicatum). The results demonstrated that C. caroliniana did not show more advantageous traits (higher total dry mass, S/R ratio and RGR) or have a lower ln RR than H. verticillata or M. spicatum. We provide a counterexample to commonly accepted thought in which the successful invasion of invasive species may not be explained by outcompeting native plants. Other biotic or abiotic factors that determine the successful invasion of C. caroliniana must be studied further.

2021 ◽  
Author(s):  
Xiaolong Huang ◽  
Jinlei Yu ◽  
Baohua Guan ◽  
Hongmin Xie ◽  
Shuailing Liu ◽  
...  

Abstract Aims The submerged plant species Carolina fanwort (Cabomba caroliniana) has become a dominant invasive aquatic plant in the Lake Taihu Basin (LTB) in China. Introduced species may escape their original specialist enemies and encounter fewer enemies in their new environment. They were assumed to have suffered less herbivory than native species as they are relatively unpalatable (the enemy release hypothesis (ERH)). The objective of this study was to compare the responses of C. caroliniana with those of co-occurring native species to herbivory from native herbivores. Methods We conducted a mesocosm experiment to record the responses of C. caroliniana and two commonly co-occurring native submerged plant counterparts, water thyme (Hydrilla verticillata) and Eurasian watermilfoil (Myriophyllum spicatum), to herbivory by two native generalist gastropod snails, Radix swinhoei and Sinotaia quadrata. Plant morphological traits (total biomass, shoot/root (S/R) biomass ratio and relative growth rate (RGR)) and physiological traits (leaf total nonstructural carbohydrate (TNC), lignin, and cellulose) were recorded. Important Findings The snail S. quadrata rarely influenced the plant traits of the three submerged plants. With the increasing numbers of R. swinhoei treatments, most of the plant traits of H. verticillata and M. spicatum changed, while those of C. caroliniana showed a relatively stable fluctuation. This result indicates that C. caroliniana is more resistant to herbivory by the snail R. swinhoei, which is consistent with the ERH hypothesis. This finding indicates that herbivorous snail species contributes to the invasion of C. caroliniana, which potentially alters the species composition of submerged plants in the plant community.


Weed Science ◽  
2021 ◽  
pp. 1-21
Author(s):  
Erika J. Haug ◽  
Khalied A. Ahmed ◽  
Travis W. Gannon ◽  
Rob J. Richardson

Abstract Additional active ingredients are needed for use in aquatic systems in order to respond to new threats or treatment scenarios, enhance selectivity, reduce use rates, and to mitigate the risk of herbicide-resistance. Florpyrauxifen-benzyl is a new synthetic auxin developed for use as an aquatic herbicide. A study was conducted at North Carolina State University, in which 10 µg L−1 of 25% radiolabeled florpyrauxifen-benzyl was applied to the isolated shoot tissue of ten different aquatic plant species in order to elucidate absorption and translocation patterns in these species. Extremely high levels of shoot absorption were observed for all species and uptake was rapid. Highest shoot absorptions were observed for crested floatingheart [Nymphoides cristata (Roxb.) Kuntze] (A192 =20 µg g−1), dioecious hydrilla [Hydrilla verticillata (L.f.) Royle] (A192 =25.3 µg g−1), variable watermilfoil (Myriophyllum heterophylum Michx.) (A192 =40.1 µg g−1) and Eurasian watermilfoil (Myriophyllum spicatum L.) (A192 =25.3 µg g−1). Evidence of translocation was observed in all rooted species tested with the greatest translocation observed in N. cristata (1.28 µg g-1 at 192 HAT). The results of this study add to the growing body of knowledge surrounding the behavior of this newly registered herbicide within aquatic plants.


Author(s):  
Dian Li ◽  
Linglei Zhang ◽  
Min Chen ◽  
Xiaojia He ◽  
Jia Li ◽  
...  

Ceratophyllum demersum L. and Hydrilla verticillata (L.f.) Royle, two pioneer, submerged plants, effectively remove heavy metals from contaminated water. The present work evaluates the bioaccumulation and defense mechanisms of these plants in the accumulation of lead from contaminated water during their optimal performance period. C. demersum and H. verticillata were investigated after 14 days of exposure to various lead concentrations (5–80 μM). The lead accumulation in both C. demersum and H. verticillata increased with an increasing lead concentration, reaching maximum values of 2462.7 and 1792 mg kg−1 dw, respectively, at 80 μM. The biomass and protein content decreased significantly in C. demersum when exposed to lead. The biomass of H. verticillata exposed to lead had no significant difference from that of the controls, and the protein content increased for the 5–10 μM exposure groups. The malondialdehyde (MDA) content and superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activities were much higher in C. demersum, suggesting considerable damage from lipid peroxidation and sensitivity to lead stress. Enzyme inhibition and inactivation were also observed in C. demersum at high lead concentrations (40–80 μM). The excellent growth status, low damage from lipid peroxidation, and high activity of catalase (CAT) and phenylalanine ammonia-lyase (PAL) observed in H. verticillata illustrate its better tolerance under the same lead stress.


2010 ◽  
Vol 9 (44) ◽  
pp. 7470-7476 ◽  
Author(s):  
Wang Hao ◽  
Zhang Songhe ◽  
Zhang Wenjing ◽  
Wei Chen ◽  
Wang Peifang

Author(s):  
G.B. Jacobucci ◽  
M.O. Tanaka ◽  
F.P.P. Leite

In the present study, we evaluate the influence of biotic and abiotic factors on temporal fluctuations of Sargassum filipendula in a subtropical shore. Monthly algal samples, abiotic components, amphipod grazer density, and epiphyte biomass were obtained from a Sargassum bed in south-eastern Brazil. Density of S. filipendula fronds decreased during the sampling period, whereas dry mass was more constant, although with a noticeable reduction in the warmer months. Hypnea musciformis was the most frequent epiphyte on S. filipendula, occurring in all sampling periods, although with significant temporal variation. Sargassum filipendula density and dry mass were both influenced by epiphyte dry mass, temperature, and amphipod grazers. Sargassum filipendula biomass negatively influenced total epiphyte biomass, whereas H. musciformis biomass was positively influenced by phosphate, nitrite, and S. filipendula density and negatively influenced by S. filipendula dry mass and amphipod grazer abundance. Algal temporal fluctuations can be related to local abiotic and biotic factors, but the variation observed for S. filipendula and its epiphytes suggest that these factors have quite distinct effects for these algae.


2021 ◽  
Vol 45 ◽  
Author(s):  
Juliane Rafaele Alves Barros ◽  
Miguel Julio Machado Guimarães ◽  
Welson Lima Simões ◽  
Natoniel Franklin de Melo ◽  
Francislene Angelotti

ABSTRACT Water deficit and high temperatures are abiotic factors that most limit plant growth and development. However, its effects depend on crop development stage and on stress duration and intensity. Thus, the objective of was to evaluate the development of cowpea subjected to water restriction in different phenological stages and to increase in air temperature. The experiment was conducted with the cultivar ‘Carijó’, in growth chambers, in a 4 x 3 x 2 factorial arrangement, corresponding to levels of water availability (25, 50, 75, and 100%,), phenological stages (vegetative, flowering and pod filling) and temperature regimes (T°1: 20-26-33 °C e T°2: 24.8-30.8-37.8 °C), respectively. Reduction of water availability in the vegetative and flowering stages caused decrease in grain production. The percentage of aborted flowers was higher in plants maintained under an increased temperature of +4.8 °C, with consequent reduction in grain production. Higher water availability values favored shoot and root dry mass production. Increase of 4.8 °C did not affect shoot and root dry mass but reduced water use efficiency by about 83%. The highest enzymatic activities of CAT, GPX and SOD were found in plants subjected to the temperature of +4.8 °C. Only APX showed lower enzymatic activity with increasing temperature. The cv. ‘Carijó’ is more sensitive to the 4.8 °C increase in air temperature than to water deficits.


2021 ◽  
Author(s):  
Christopher Mudge ◽  
Kurt Getsinger

Herbicide selection is key to efficiently managing nuisance vegetation in our nation’s waterways. After selecting the active ingredient, there still remains multiple proprietary and generic products to choose from. Recent small-scale research has been conducted to compare the efficacy of these herbicides against floating and emergent species. Therefore, a series of mesocosm and growth chamber trials were conducted to evaluate subsurface applications of the following herbicides against submersed plants: diquat versus coontail (Ceratophyllum demersum L.), hydrilla (Hydrilla verticillata L.f. Royle), southern naiad (Najas guadalupensis (Sprengel) Magnus), and Eurasian watermilfoil (Myriophyllum spicatum L.); flumioxazin versus coontail, hydrilla, and Eurasian watermilfoil; and triclopyr against Eurasian watermilfoil. All active ingredients were applied at concentrations commonly used to manage these species in public waters. Visually, all herbicides within a particular active ingredient performed similarly with regard to the onset and severity of injury symptoms throughout the trials. All trials, except diquat versus Eurasian watermilfoil, resulted in no differences in efficacy among the 14 proprietary and generic herbicides tested, and all herbicides provided 43%–100% control, regardless of active ingredient and trial. Under mesocosm and growth chamber conditions, the majority of the generic and proprietary herbicides evaluated against submersed plants provided similar control.


2013 ◽  
Vol 61 (4) ◽  
pp. 274 ◽  
Author(s):  
Rujin Bian ◽  
Dandan Nie ◽  
Fu Xing ◽  
Xiaoling Zhou ◽  
Ying Gao ◽  
...  

As a prominent epigenetic modification, cytosine methylation may play a critical role in the adaptation of plants to different environments. The present study sought to investigate possible impacts of differential levels of nitrogen (N) supply on cytosine-methylation levels of a clonal plant, Hierochloe glabra Trin. (Poaceae). For this purpose, nitrate was applied at concentrations of 0, 0.15, 0.30 and 0.45 g N kg–1 soil, and ecologically important morphological traits were measured. The methylation-sensitive amplification polymorphism method was also conducted to analyse the variations in DNA cytosine methylation. Our results showed that N addition reduced CHG cytosine-methylation levels markedly compared with control plants growing in homogeneous pots (P = 0.026). No substantial differences were observed in morphological traits at the end of the growing stage, except for the highest ratio of leaf area to leaf dry mass in the medium-N patch (P = 0.008). However, significant linear regression relationships were found between cytosine-methylation levels and morphological traits, such as bud number and rhizome length and biomass. In conclusion, the higher cytosine-methylation level may activate asexual reproduction to produce more offspring and expand plant populations, possibly helping clonal plants to adapt to heterogeneous habitats.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 988-991 ◽  
Author(s):  
Yoshiaki Kitaya ◽  
Genhua Niu ◽  
Toyoki Kozai ◽  
Maki Ohashi

Lettuce (Lactuca sativa L. cv. Summer-green) plug transplants were grown for 3 weeks under 16 combinations of four levels (100, 150, 200, and 300 μmol·m-2·s-1) of photosynthetic photon flux (PPF), two photoperiods (16 and 24 h), and two levels of CO2 (400 and 800 μmol·mol-1) in growth chambers maintained at an air temperature of 20 ±2 °C. As PPF increased, dry mass (DM), percent DM, and leaf number increased, while ratio of shoot to root dry mass (S/R), ratio of leaf length to leaf width (LL/LW), specific leaf area, and hypocotyl length decreased. At the same PPF, DM was increased by 25% to 100% and 10% to 100% with extended photoperiod and elevated CO2 concentration, respectively. Dry mass, percent DM, and leaf number increased linearly with daily light integral (DLI, the product of PPF and photoperiod), while S/R, specific leaf area, LL/LW and hypocotyl length decreased as DLI increased under each CO2 concentration. Hypocotyl length was influenced by PPF and photoperiod, but not by CO2 concentration. Leaf morphology, which can be reflected by LL/LW, was substantially influenced by PPF at 100 to 200 μmol·m-2·s-1, but not at 200 to 300 μmol·m-2·s-1. At the same DLI, the longer photoperiod promoted growth under the low CO2 concentration, but not under the high CO2 concentration. Longer photoperiod and/or higher CO2 concentration compensated for a low PPF.


Sign in / Sign up

Export Citation Format

Share Document