Carbon and Nitrogen Sources for Protein Synthesis and Growth of Sugar-beet Leaves

1967 ◽  
Vol 18 (1) ◽  
pp. 140-150 ◽  
Author(s):  
K. W. JOY
2021 ◽  
Vol 1 (1) ◽  
pp. 25-31
Author(s):  
Muhammadi Muhammadi ◽  
Shabina Shafiq

Production of polyhydroxyalkanoate (PHA) under optimum culture conditions using local cheap feedstocks is indispensable to overcome the current cost of PHA-based plastics. For this purpose, optimum culture conditions and cheap feedstocks were investigated to produce maximum yield of PHA in CMG1415. Maximum yield was obtained with sucrose or sugar beet as sole source of precursors for PHA in 8 days of incubation at 35 °C in a minimal medium adjusted at pH 7. Further, for maximum yield no mechanical shaking was needed. Local cheap feedstock such as sugar beet and molasses were found to play as significant carbon and nitrogen sources for maximum PHA yield.  Bacterial plastic produced under these low-labor-cost culture conditions may to reduce the present cost of degradable bioplastic and be much effective alternate of nondegradable varieties of synthetic plastic.


2018 ◽  
Vol 69 ◽  
pp. 1-11 ◽  
Author(s):  
Willian Daniel Hahn Schneider ◽  
Roselei Claudete Fontana ◽  
Simone Mendonça ◽  
Félix Gonçalves de Siqueira ◽  
Aldo José Pinheiro Dillon ◽  
...  

2012 ◽  
Vol 496 ◽  
pp. 457-460
Author(s):  
Xiang Ping Kong

The growth conditions of a Geobacillus sp. were investigated by single-factor experiments. The strain was strictly aerobic bacterium, and could grow on hydrocarbons as the sole carbon source. The optimum carbon and nitrogen sources were 3.0% sucrose and 0.20% KNO3, respectively. The range of temperature, salinity and pH for the bacterial growth was 35-70 °C, 0-10% NaCl and 5.5-9.5, and good growth was obtained at 35-65 °C, 0.5-8% NaCl and 6.0-9.0, respectively. Particularly, the optimum temperature for the bacterial growth was between 50 °C and 60 °C. The strain had wide adaptability to the extreme conditions, and may be potentially applied to microbial enhanced oil recovery and oil-waste bioremediation technology.


2011 ◽  
Vol 10 (15) ◽  
pp. 2951-2958 ◽  
Author(s):  
Gutieacute rrez Rojas Ivonne ◽  
Beatriz Torres Geraldo Ana ◽  
Moreno Sarmiento Nubia

Sign in / Sign up

Export Citation Format

Share Document