scholarly journals Lab-Scale Optimization of Polyhydroxyalkanoate Production by Bacterial Strain cmg1415 on Local Cheap Substrates Using One Variable at a Time Approach

2021 ◽  
Vol 1 (1) ◽  
pp. 25-31
Author(s):  
Muhammadi Muhammadi ◽  
Shabina Shafiq

Production of polyhydroxyalkanoate (PHA) under optimum culture conditions using local cheap feedstocks is indispensable to overcome the current cost of PHA-based plastics. For this purpose, optimum culture conditions and cheap feedstocks were investigated to produce maximum yield of PHA in CMG1415. Maximum yield was obtained with sucrose or sugar beet as sole source of precursors for PHA in 8 days of incubation at 35 °C in a minimal medium adjusted at pH 7. Further, for maximum yield no mechanical shaking was needed. Local cheap feedstock such as sugar beet and molasses were found to play as significant carbon and nitrogen sources for maximum PHA yield.  Bacterial plastic produced under these low-labor-cost culture conditions may to reduce the present cost of degradable bioplastic and be much effective alternate of nondegradable varieties of synthetic plastic.

Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 461 ◽  
Author(s):  
Soo Kweon Lee ◽  
Ju Hun Lee ◽  
Hyeong Ryeol Kim ◽  
Youngsang Chun ◽  
Ja Hyun Lee ◽  
...  

Cordycepin, a beneficial bioactive product specifically found in Cordyceps, has received attention in various bioindustrial applications such as in pharmaceuticals, functional foods, and cosmetics, due to its significant functions. However, low productivity of cordycepin is a barrier to commercialization. In this study, Cordyceps militaris was mutated by UV irradiation to improve the cordycepin production. The highest producer KYL05 strain was finally selected and its cordycepin production was increased about 1.5-fold compared to wild type. In addition, the effects of culture conditions were fundamentally investigated. Optimal conditions were as follows: pH 6, temperature of 25 °C, shaking speed of 150 rpm, and culture time of 6 days. Effects of medium component on cordycepin production were also investigated by using various carbon and nitrogen sources. It was found that glucose and casein hydrolysate (CH) were most effective as carbon and nitrogen sources in cordycepin production (2.3-fold improvement) with maximum cordycepin production of about 445 mg/L. In particular, production was significantly affected by CH. These results should be of value in improving the efficiency of mass production of cordycepin.


2015 ◽  
Vol 58 (1) ◽  
pp. 23-29
Author(s):  
Memuna Ghafoor Shahid ◽  
Muhammad Nadeem

The present study deals with the screening of fungal species and suitable fermentation medium for the production of ergot alkaloids. Various species of genus Penicillium were grown on differentfermentation media by employing surface culture fermentation technique to achieve the most suitable medium and the best Penicillium sp. The results showed that medium M5 gave maximum yield withPenicillium commune. Different culture conditions such as effect of different carbon and nitrogen sources, their concentration levels, different pH values and sizes of inoculum on the production of ergot alkaloids were also studied to improve the yield. Maximum production of ergot alkaloids (4.32 mg/L) was achieved with 15 mL spore suspension at pH 5 in fermentation medium containing 35% (w/v) sucrose. All these  results indicate that culture conditions are very much crucial to improve the yield of ergot alkaloids produced by Penicillium commune through surface culture process. 


2016 ◽  
Vol 62 (9) ◽  
pp. 744-752
Author(s):  
Shixiu Cui ◽  
Tianwen Wang ◽  
Hong Hu ◽  
Liangwei Liu ◽  
Andong Song ◽  
...  

There exist significant differences between the 2 main types of xylanases, family F10 and G11. A clear understanding of the expression pattern of microbial F10 and G11 under different culture conditions would facilitate better production and industrial application of xylanase. In this study, the fungal xylanase producer Aspergillus niger A09 was systematically investigated in terms of induced expression of xylanase F10 and G11. Results showed that carbon and nitrogen sources could influence xylanase F10 and G11 transcript abundance, with G11 more susceptible to changes in culture media composition. The most favorable carbon and nitrogen sources for high G11 and low F10 production by A. niger A09 were xylan (2%) and (NH4)2C2O4 (0.3%), respectively. Following cultivation at 33 °C for 60 h, the highest xylanase activity (1132 IU per gram of wet mycelia) was observed. On the basis of differential gene expression of F10 and G11, as well as their different properties, we deduced that the F10 protein initially targeted xylan and hydrolyzed it into fragments including xylose, after which xylose acted as the inducer of F10 and G11 gene expression. These speculations also accounted for our failure to identify conditions favoring the high production of F10 but a low production of G11.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Neelima Deshpande ◽  
Prachi Choubey ◽  
Manasi Agashe

A species ofStreptomyces,Streptomyces ginsengisoli, a river isolate, was evaluated for production of an enzyme, L-asparaginase, with multiple functions mainly anticancer activity. The actinomycete was subjected to submerged fermentation by “shake flask” method. The quantity of L-asparaginase produced was estimated as 3.23 μmol/mL/min. The effect of various culture conditions on L-asparaginase production was studied by adopting a method of variation in one factor at a time. Of the various conditions tested, glucose (followed by starch) and peptone served as good carbon and nitrogen sources, respectively, for maximal production of enzyme at pH 8. The temperature of 30°C and an incubation period of 5 days with 0.05 g% asparagine concentration were found to be optimum for L-asparaginase production.


2012 ◽  
Vol 518-523 ◽  
pp. 453-459
Author(s):  
Li Fan Liu

Bioflocculant MBF7 was produced by a novel bioflocculant-producing microorganism HHE-P7. In order to reduce the bioflocculant producing cost, culture experiments were conducted. The effects of medium components including carbon and nitrogen sources as well as culture conditions such as pH of molasses diluents, cultivating temperature, inoculum size were investigated. The results showed when the molasses waste was diluted at COD concentration of 2000 mg/L, the optimal culture conditions for MBF7 production by HHE-P7 were inoculum size 1% (v/v), initial pH 5, cultivating temperature 25°C at the rotation speed 150 r/min. Under such conditions, MBF7 had a flocculating activity of 83% for 5 g/L kaolin clay suspension. About 3.19 g crude bioflocculant could be recovered from 1.0 L of molasses fermentation broth.


1969 ◽  
Vol 15 (8) ◽  
pp. 863-868 ◽  
Author(s):  
C. R. Curtis

A homothallic isolate of Fusarium solani produced red perithecia when illuminated and grown on a simple basal medium containing L-tyrosine; L-phenylalanine; or D-glucose + NaNO3 as a sole carbon and nitrogen source. Few or no perithecia formed in darkness on these media. Quantitative comparisons of perithecial formation in illuminated treatments indicated that L-tyrosine was a significantly better sole source of carbon and nitrogen than either L-phenylalanine or D-glucose + NaNO3. There was no significant difference between the responses on media containing L-phenylalanine and D-glucose + NaNO3. If dark-grown treatments were subsequently illuminated, perithecia formed on media containing L-tyrosine and D-glucose + NaNO3 but not on L-phenylalanine. The initial pH of the medium containing L-tyrosine did not seem to affect the fruiting response in illuminated cultures. A reduction in the amount of L-tyrosine in the basal medium resulted in a corresponding decrease in perithecial formation.The results are discussed in connection with a possible relationship of sexual reproduction, the light requirement, and tyrosine metabolism.


2020 ◽  
Vol 11 (1) ◽  
pp. 7689-7699

The study was aimed to analyze the biological transformation of cellulose in rice bran by Aspergillus flavus SB04 in SSF for 28 days. The culture conditions such as pH, temperature, moisture content were optimized for the effective production of the enzyme in SSF. Effect of carbon and nitrogen sources on cellulase production was further estimated in SMF and were quantified for 24hrs intervals for 7 days Maximum cellulase production for rice bran was observed to be high in glucose (carbon source) and yeast extract (nitrogen source) at initial moisture 75ml, pH 6, temperature 33°C and fermentation period was 14th day that was optimized using response surface methodology. The enzyme production was analyzed individually by dinitrosalicylic acid (DNS) method, Lowry protein estimation, and filter paper assay. The lignocellulosic degradation was observed and confirmed by FTIR and SEM. The degradation of cellulose periodically increases after 7 days, which influences the yield of cellulase enzyme.


Sign in / Sign up

Export Citation Format

Share Document