scholarly journals Involvement of a truncated MADS-box transcription factor ZmTMM1 in root nitrate foraging

2020 ◽  
Vol 71 (15) ◽  
pp. 4547-4561
Author(s):  
Ying Liu ◽  
Zhongtao Jia ◽  
Xuelian Li ◽  
Zhangkui Wang ◽  
Fanjun Chen ◽  
...  

Abstract Plants can develop root systems with distinct anatomical features and morphological plasticity to forage nutrients distributed heterogeneously in soils. Lateral root proliferation is a typical nutrient-foraging response to a local supply of nitrate, which has been investigated across many plant species. However, the underlying mechanism in maize roots remains largely unknown. Here, we report on identification of a maize truncated MIKC-type MADS-box transcription factor (ZmTMM1) lacking K- and C-domains, expressed preferentially in the lateral root branching zone and induced by the localized supply of nitrate. ZmTMM1 belongs to the AGL17-like MADS-box transcription factor family that contains orthologs of ANR1, a key regulator for root nitrate foraging in Arabidopsis. Ectopic overexpression of ZmTMM1 recovers the defective growth of lateral roots in the Arabidopsis anr1 agl21 double mutant. The local activation of glucocorticoid receptor fusion proteins for ZmTMM1 and an artificially truncated form of AtANR1 without the K- and C-domains stimulates the lateral root growth of the Arabidopsis anr1 agl21 mutant, providing evidence that ZmTMM1 encodes a functional MADS-box that modulates lateral root development. However, no phenotype was observed in ZmTMM1-RNAi transgenic maize lines, suggesting a possible genetic redundancy of ZmTMM1 with other AGL17-like genes in maize. A comparative genome analysis further suggests that a nitrate-inducible transcriptional regulation is probably conserved in both truncated and non-truncated forms of ZmTMM1-like MADS-box transcription factors found in grass species.

2014 ◽  
Vol 7 (11) ◽  
pp. 1653-1669 ◽  
Author(s):  
Lin-Hui Yu ◽  
Zi-Qing Miao ◽  
Guo-Feng Qi ◽  
Jie Wu ◽  
Xiao-Teng Cai ◽  
...  

2021 ◽  
Author(s):  
Pierre-Mathieu Pélissier ◽  
Hans Motte ◽  
Tom Beeckman

Abstract Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics towards nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.


2018 ◽  
Vol 30 (1) ◽  
pp. 101-116 ◽  
Author(s):  
Kasper van Gelderen ◽  
Chiakai Kang ◽  
Richard Paalman ◽  
Diederik Keuskamp ◽  
Scott Hayes ◽  
...  

2013 ◽  
Vol 93 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Shuaizhang Li ◽  
Jiajia Ma ◽  
Pei Liu

Li, S., Ma, J. and Liu, P. 2013. OPR3 is expressed in phloem cells and is vital for lateral root development in Arabidopsis. Can. J. Plant Sci. 93: 165–170. Jasmonates, a group of oxylipin phytohormones in angiosperms, play important roles in regulating plant growth and development and in responding to environmental stimuli. AtOPR3, a 12-oxo-phytodienoic acid (OPDA) reductase in Arabidopsis thaliana, has been proven to be vital in catalyzing jasmonate biosynthesis. Here, the temporal and spatial expression of AtOPR3 was investigated by promoter-GUS fusion in A. thaliana. In pOPR3::GUS transgenic plants, the GUS activity was detected in roots, leaves and all floral organs, and was highly induced by MeJA treatment. In addition, the GUS activity was principally detected in the phloem cells of the leaf veins. The sequence of the OPR3 promoter region was predicted to have 49 potential binding sites for transcription factors including the well-known Myc-like basic helix-loop-helix, GATA, MADS, MYB-like and Homeobox proteins. In consistent with an expression of OPR3 in lateral roots, there are more lateral roots in the opr3 mutant plants, in which OPR3 expression is knocking-out. In addition, the involvement of auxin biosynthesis in JA-regulated lateral root development is implied by our observation that the transcripts of ASA1, a gene involved in auxin biosynthesis, are decreased in opr3 plants.


Author(s):  
Mengbai Zhang ◽  
Huanan Su ◽  
Peter M. Gresshoff ◽  
Brett J. Ferguson

AbstractLegumes control their nodule numbers through the Autoregulation Of Nodulation (AON). Rhizobia infection stimulates the production of root-derived CLE peptide hormones that are translocated to the shoot where they regulate a new signal. We used soybean to demonstrate that this shoot-derived signal is miR2111, which is transported via phloem to the root where it targets transcripts of Too Much Love (TML), a negative regulator of nodulation. Shoot perception of rhizobia-induced CLE peptides suppresses miR2111 expression, resulting in TML accumulation in roots and subsequent inhibition of nodule organogenesis. Feeding synthetic mature miR2111 via the petiole increased nodule numbers per plant. Likewise, elevating miR2111 availability by over-expression promoted nodulation, while target mimicry of TML induced the opposite effect on nodule development in wild-type plants and alleviated the supernodulating and stunted root growth phenotypes of AON-defective mutants. Additionally, in non-nodulating wild-type plants, ectopic expression of miR2111 significantly enhanced lateral root emergence with a decrease in lateral root length and average root diameter. In contrast, hairy roots constitutively expressing the target mimic construct exhibited reduced lateral root density. Overall, these findings demonstrate that miR2111 is both the critical shoot-to-root factor that positively regulates root nodule development, and also acts to shape root system architecture via orchestrating the degree of root branching, as well as the length and thickness of lateral roots.


2020 ◽  
Author(s):  
Nadav Eisner ◽  
Tzofia Maymon ◽  
Ester Cancho Sanchez ◽  
Dana Bar-Zvi ◽  
Sagie Brodsky ◽  
...  

AbstractThe transcription factor ABA-INSENSITIVE(ABI)4 has diverse roles in regulating plant growth, including inhibiting germination and reserve mobilization in response to ABA and high salinity, inhibiting seedling growth in response to high sugars, inhibiting lateral root growth, and repressing light-induced gene expression. ABI4 activity is regulated at multiple levels, including gene expression, protein stability, and activation by phosphorylation. Although ABI4 can be phosphorylated at multiple residues by MAPKs, we found that S114 is the preferred site of MPK3. To examine the possible biological role of S114 phosphorylation, we transformed abi4-1 mutant plants with ABI4pro::ABI4 constructs encoding wild type (114S), phosphorylation-null (S114A) or phosphomimetic (S114E) forms of ABI4. Phosphorylation of S114 is necessary for the response to ABA, glucose, salt stress, and lateral root development, where the abi4 phenotype could be complemented by expressing ABI4(114S) or ABI4(S114E) but not ABI4(S114A). Comparison of root transcriptomes in ABA-treated roots of abi4-1 mutant plants transformed with constructs encoding the different phosphorylation-forms of S114 of ABI4 revealed that 85% of the ABI4-regulated genes whose expression pattern could be restored by expressing ABI4(114S) are down-regulated by ABI4. Over half of the ABI4-modulated genes were independent of the phosphorylation state of ABI4; these are enriched for stress responses. Phosphorylation of S114 was required for regulation of 35% of repressed genes, but only 17% of induced genes. The genes whose repression requires the phosphorylation of S114 are mainly involved in embryo and seedling development, growth and differentiation, and regulation of gene expression.HighlightsTranscription factor ABI4 is a substrate of MAP kinases.MPK3 preferentially phosphorylates Serine 114 of ABI4.Phosphorylated Serine 114 of ABI4 is required for the complementation of abi4 mutants.Phosphorylated ABI4 acts primarily as a repressor.


Sign in / Sign up

Export Citation Format

Share Document