Fatty Alcohol Oxidase 3 (FAO3) and FAO4b as Mediators Connect the Alcohol- and Alkane-forming Pathways in Arabidopsis Stem Wax

Author(s):  
Xianpeng Yang ◽  
Lili Cui ◽  
Shipeng Li ◽  
Changle Ma ◽  
Dylan K Kosma ◽  
...  

Abstract Alcohol- and alkane-forming pathways in cuticular wax biosynthesis are well characterized in Arabidopsis. However, potential interactions between the two pathways remain unclear. Our study revealed that mutation of CER4, the key gene in the alcohol-forming pathway, also led to a deficiency in alkane-forming pathway in distal stems. To trace the connection between these two pathways, we characterized two homologs of fatty alcohol oxidase (FAO), FAO3 and FAO4b, which were highly expressed in distal stems and localized to the endoplasmic reticulum. The amounts of waxes from the alkane-forming pathway were significantly decreased in stems of fao4b, and much lower in fao3 fao4b, indicative of an overlapping function for both proteins in wax synthesis. Additionally, overexpression of FAO3 and FAO4b in Arabidopsis resulted in a dramatic reduction of primary alcohols and significant increase of aldehydes and related waxes. Moreover, expressing FAO3 or FAO4b led to significantly decreased amounts of C18 - C26 alcohols in yeast co-expressing CER4 and FAR1. Collectively, these findings demonstrate that FAO3 and FAO4b are functionally redundant in suppression of primary alcohols accumulation and contribution to aldehyde production, which provides a missing and long sought-after link between the two pathways in wax biosynthesis.

2019 ◽  
Vol 225 (5) ◽  
pp. 2094-2107 ◽  
Author(s):  
Du Zhang ◽  
Huifang Yang ◽  
Xiaochen Wang ◽  
Yijian Qiu ◽  
Lihong Tian ◽  
...  

2020 ◽  
Vol 47 (2) ◽  
pp. 156
Author(s):  
Xiao Wu ◽  
Yangyang Chen ◽  
Xinjie Shi ◽  
Kaijie Qi ◽  
Peng Cao ◽  
...  

The chemical composition, crystal morphology and expression levels of associated genes involved in the cuticular wax of three pear cultivars ‘Housui’, ‘Cuiguan’ and ‘Yuluxiang’ after treatment with palmitic acid (PA), hexacosanoic acid (HA), ethephon and methyl jasmonate (Meja) were determined. A total of 59 cuticular wax compounds were detected across all samples. The wax coverage of ‘Housui’ fruits increased by 71.74, 93.48 and 89.13% after treatment with PA, ethephon and Meja, respectively, and treatment with PA, HA and Meja also increased the wax coverage in ‘Cuiguan’ (65.33, 20.00 and 21.33% respectively) and in ‘Yuluxiang’ (38.60, 63.16 and 42.11% respectively) fruits. Heatmap clustering analysis and partial least-squares-discriminate analysis (PLS-DA) also revealed that the different treatments exerted various influences on cuticular wax among the different cultivars. In addition, the wax component coverage and wax crystal structures showed variations among the different cultivars as well as different treatments. Gene expression analysis revealed 11 genes likely to be involved in pear fruit wax synthesis, transport and regulation. Taken together, the results of this study demonstrate that the differences in the cuticular waxes of the fruits of different cultivars after treatment with PA, HA, ethephon or Meja might lead to a better understanding of the regulatory effect of a substrate or elicitor on the composition and deposition of cuticular waxes.


1994 ◽  
Vol 40 (6) ◽  
pp. 873-875 ◽  
Author(s):  
Glen D. Kemp ◽  
F. Mark Dickinson ◽  
Colin Ratledge

2016 ◽  
Vol 173 (2) ◽  
pp. 944-955 ◽  
Author(s):  
Xiaochen Wang ◽  
Yuanyuan Guan ◽  
Du Zhang ◽  
Xiangbai Dong ◽  
Lihong Tian ◽  
...  

1994 ◽  
Vol 40 (6) ◽  
pp. 873-875
Author(s):  
Glen D Kemp ◽  
F Mark Dickinson ◽  
Colin Ratledge

2009 ◽  
Vol 30 (5) ◽  
pp. 365-373 ◽  
Author(s):  
Christophe Nicolas Nicolaz ◽  
Maxim Zhadobov ◽  
Fabienne Desmots ◽  
Armelle Ansart ◽  
Ronan Sauleau ◽  
...  

Trees ◽  
2021 ◽  
Author(s):  
Paul Grünhofer ◽  
Lena Herzig ◽  
Lukas Schreiber

Abstract Key message We identified two poplar clones of the same species as highly comparable, yet clones of two further species of the same genus to be distinctly different regarding multiple morphological and ecophysiological traits. Abstract Leaf morphology, wax composition, and residual (cuticular) transpiration of four poplar clones (two clones of the hybrid species P. × canescens, P. trichocarpa, and P. euphratica) were monitored from the beginning to end of the growing season 2020. A pronounced epicuticular wax coverage was found only with P. euphratica. As the most prominent substance classes of cuticular wax primary alcohols, alkanes and esters were identified with P. × canescens and P. trichocarpa, whereas esters and alkanes were completely lacking in P. euphratica. Wax amounts were slightly decreasing during the season and significantly lower wax amounts were found for newly formed leaves in summer compared to leaves of the same age formed in spring. Residual (cuticular) transpiration was about five to tenfold lower for P. × canescens compared with the two other poplar species. Interestingly, with three of the four investigated species, newly formed leaves in summer had lower wax coverages and lower rates of residual (cuticular) transpiration compared to leaves of exactly the same age formed in spring. Our findings were especially surprising with P. euphratica, representing the only one of the four investigated poplar species naturally growing in very dry and hot climates in Central Asia. Instead of developing very low rates of residual (cuticular) transpiration, it seems to be of major advantage for P. euphratica to develop a pronounced epicuticular wax bloom efficiently reflecting light.


Author(s):  
Alessa Lappe ◽  
Nina Jankowski ◽  
Annemie Albrecht ◽  
Katja Koschorreck

Abstract The development of enzymatic processes for the environmentally friendly production of 2,5-furandicarboxylic acid (FDCA), a renewable precursor for bioplastics, from 5-hydroxymethylfurfural (HMF) has gained increasing attention over the last years. Aryl-alcohol oxidases (AAOs) catalyze the oxidation of HMF to 5-formyl-2-furancarboxylic acid (FFCA) through 2,5-diformylfuran (DFF) and have thus been applied in enzymatic reaction cascades for the production of FDCA. AAOs are flavoproteins that oxidize a broad range of benzylic and aliphatic allylic primary alcohols to the corresponding aldehydes, and in some cases further to acids, while reducing molecular oxygen to hydrogen peroxide. These promising biocatalysts can also be used for the synthesis of flavors, fragrances, and chemical building blocks, but their industrial applicability suffers from low production yield in natural and heterologous hosts. Here we report on heterologous expression of a new aryl-alcohol oxidase, MaAAO, from Moesziomyces antarcticus at high yields in the methylotrophic yeast Pichia pastoris (recently reclassified as Komagataella phaffii). Fed-batch fermentation of recombinant P. pastoris yielded around 750 mg of active enzyme per liter of culture. Purified MaAAO was highly stable at pH 2–9 and exhibited high thermal stability with almost 95% residual activity after 48 h at 57.5 °C. MaAAO accepts a broad range of benzylic primary alcohols, aliphatic allylic alcohols, and furan derivatives like HMF as substrates and some oxidation products thereof like piperonal or perillaldehyde serve as building blocks for pharmaceuticals or show health-promoting effects. Besides this, MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) to FFCA, which has not been shown for any other AAO so far. Combining MaAAO with an unspecific peroxygenase oxidizing HMFCA to FFCA in one pot resulted in complete conversion of HMF to FDCA within 144 h. MaAAO is thus a promising biocatalyst for the production of precursors for bioplastics and bioactive compounds. Key points • MaAAO from M. antarcticus was expressed in P. pastoris at 750 mg/l. • MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). • Complete conversion of HMF to 2,5-furandicarboxylic acid by combining MaAAO and UPO.


1994 ◽  
Vol 40 (5) ◽  
pp. 729-734 ◽  
Author(s):  
Rolf K. Hommel ◽  
Dirk Lassner ◽  
Joachim Weiss ◽  
Hans-Peter Kleber

2014 ◽  
Vol 204 (5) ◽  
pp. 659-668 ◽  
Author(s):  
Kèvin Knoops ◽  
Selvambigai Manivannan ◽  
Małgorzata N. Cepińska ◽  
Arjen M. Krikken ◽  
Anita M. Kram ◽  
...  

We demonstrate that the peroxin Pex3 is not required for the formation of peroxisomal membrane structures in yeast pex3 mutant cells. Notably, pex3 mutant cells already contain reticular and vesicular structures that harbor key proteins of the peroxisomal receptor docking complex—Pex13 and Pex14—as well as the matrix proteins Pex8 and alcohol oxidase. Other peroxisomal membrane proteins in these cells are unstable and transiently localized to the cytosol (Pex10, Pmp47) or endoplasmic reticulum (Pex11). These reticular and vesicular structures are more abundant in cells of a pex3 atg1 double deletion strain, as the absence of Pex3 may render them susceptible to autophagic degradation, which is blocked in this double mutant. Contrary to earlier suggestions, peroxisomes are not formed de novo from the endoplasmic reticulum when the PEX3 gene is reintroduced in pex3 cells. Instead, we find that reintroduced Pex3 sorts to the preperoxisomal structures in pex3 cells, after which these structures mature into normal peroxisomes.


Sign in / Sign up

Export Citation Format

Share Document