An action-oriented perspective on space and affordances

2021 ◽  
pp. 73-140
Author(s):  
Michael A. Arbib

Architects design spaces that offer perceptual cues, affordances, for our various effectivities. Lina Bo Bardi’s São Paulo Museum demonstrates how praxic and contemplative actions are interleaved—space is effective and affective. Navigation often extends beyond wayfinding to support ongoing behavior. Scripts set out the general rules for a particular kind of behavior, and may suggest places that a building must provide. Cognitive maps support wayfinding. Other maps in the brain represent sensory or motor patterns of activity. Juhani Pallasmaa’s reflections on The Thinking Hand lead into a view of how the brain mediates that thinking, modeling hand–eye coordination at two levels. The first coordinates perceptual and motor schemas. The body schema is an adaptable collage of perceptual and motor skills. The second coordinates the ventral “what” pathway that can support planning of actions, and the dorsal “how” pathway that links affordance-related details to motor control. A complementary challenge is understanding how schemas in the head relate to social schemas. Finally, the chapter compares the cognitive challenges in designing a building and in developing a computational brain model of cognitive processes.

2004 ◽  
Vol 27 (3) ◽  
pp. 377-396 ◽  
Author(s):  
Rick Grush

The emulation theory of representation is developed and explored as a framework that can revealingly synthesize a wide variety of representational functions of the brain. The framework is based on constructs from control theory (forward models) and signal processing (Kalman filters). The idea is that in addition to simply engaging with the body and environment, the brain constructs neural circuits that act as models of the body and environment. During overt sensorimotor engagement, these models are driven by efference copies in parallel with the body and environment, in order to provide expectations of the sensory feedback, and to enhance and process sensory information. These models can also be run off-line in order to produce imagery, estimate outcomes of different actions, and evaluate and develop motor plans. The framework is initially developed within the context of motor control, where it has been shown that inner models running in parallel with the body can reduce the effects of feedback delay problems. The same mechanisms can account for motor imagery as the off-line driving of the emulator via efference copies. The framework is extended to account for visual imagery as the off-line driving of an emulator of the motor-visual loop. I also show how such systems can provide for amodal spatial imagery. Perception, including visual perception, results from such models being used to form expectations of, and to interpret, sensory input. I close by briefly outlining other cognitive functions that might also be synthesized within this framework, including reasoning, theory of mind phenomena, and language.


2021 ◽  
pp. 133-151 ◽  
Author(s):  
Noriaki Kanayama ◽  
Kentaro Hiromitsu

Is the body reducible to neural representation in the brain? There is some evidence that the brain contributes to the functioning of the body from neuroimaging, neurophysiological, and lesion studies. Well-known dyadic taxonomy of the body schema and the body image (hereafter BSBI) is based primarily on the evidence in brain-damaged patients. Although there is a growing consensus that the BSBI exists, there is little agreement on the dyadic taxonomy because it is not a concrete and common concept across various research fields. This chapter tries to investigate the body representation in the cortex and nervous system in terms of sensory modality and psychological function using two different approaches. The first approach is to review the neurological evidence and cortical area which is related to body representation, regardless of the BSBI, and then to reconsider how we postulate the BSBI in our brain. It can be considered that our body representation could be constructed by the whole of the neural system, including the cortex and peripheral nerves. The second approach is to revisit the BSBI conception from the viewpoint of recent neuropsychology and propose three types of body representation: body schema, body structural description, and body semantics. This triadic taxonomy is considered consistent with the cortical networks based on the evidence of bodily disorders due to brain lesions. These two approaches allow to reconsider the BSBI more carefully and deeply and to give us the possibility that the body representation could be underpinned with the network in the brain.


2021 ◽  
pp. 3-17
Author(s):  
Frédérique de Vignemont ◽  
Victor Pitron ◽  
Adrian J. T. Alsmith

The body schema is commonly defined as the representation of a body for action. But what do we mean exactly by that? What makes the body schema so special? The type of information that it represents? The way this information is represented? Or the function of the representation? And is there more than one type of body schema? There is a sense indeed in which the term ‘body schema’ is ambiguous, in that it functions as a general term that groups together various body representations intervening at different stages in motor control, representing short- or long-term properties, used for positive or negative affordances. In addition, one might want to distinguish between local body schemata, which represent body parts, and a global body schema, which represents the body as a whole. But is this latter holistic representation really necessary? Here this chapter will present a detailed characterization of the manifold of representational processes involved in what we commonly refer to as the body schema, as well as the key mechanisms that contribute to their construal.


2016 ◽  
Vol 28 (6) ◽  
pp. 842-851 ◽  
Author(s):  
Taylor W. Webb ◽  
Hope H. Kean ◽  
Michael S. A. Graziano

Previous studies show that it is possible to attend to a stimulus without awareness of it. Whether attention and awareness are independent or have a specific relationship, however, remains debated. Here, we tested three aspects of visual attention with and without awareness of the visual stimulus. Metacontrast masking rendered participants either subjectively aware or not aware of the stimulus. Attention drawn to the stimulus was measured by using the stimulus as a cue in a spatial attention task. We found that attention was drawn to the stimulus regardless of whether or not people were aware of it. However, attention changed significantly in the absence of awareness in at least three ways. First, attention to a task-relevant stimulus was less stable over time. Second, inhibition of return, the automatic suppression of attention to a task-irrelevant stimulus, was reduced. Third, attention was more driven by the luminance contrast of the stimulus. These findings add to the growing information on the behavior of attention with and without awareness. The findings are also consistent with our recently proposed account of the relationship between attention and awareness. In the attention schema theory, awareness is the internal model of attention. Just as the brain contains a body schema that models the body and helps control the body, so it contains an attention schema that helps control attention. In that theory, in the absence of awareness, the control of attention should suffer in basic ways predictable from dynamical systems theory. The present results confirm some of those predictions.


2021 ◽  
pp. 152-180
Author(s):  
Matej Hoffmann

Humans and animals excel in combining information from multiple sensory modalities, controlling their complex bodies, adapting to growth or failures, or using tools. The key foundation is an internal representation of the body that the agent—human, animal, or robot—has developed. In the biological realm, evidence has been accumulating in diverse disciplines, giving rise to the concepts of body image, body schema, and others. In robotics, a model of the robot is an indispensable component that enables to control the machine. This chapter compares the character of body representations in biology with their robotic counterparts and relates that to the differences in performance observed. Conclusions are drawn about how robots can inform the biological sciences dealing with body representations and which of the features of the ‘body in the brain’ should be transferred to robots, giving rise to more adaptive and resilient self-calibrating machines.


2021 ◽  
Author(s):  
Eli Sennesh ◽  
Jordan E. Theriault ◽  
Dana H. Brooks ◽  
Jan-Willem van de Meent ◽  
Lisa Feldman Barrett ◽  
...  

The brain regulates the body by anticipating its needs and attempting to meet them before they arise – a process called allostasis. Allostasis requires a model of the changing sensory conditions within the body, a process called interoception. In this paper, we examine how interoception may provide performance feedback for allostasis. We suggest studying allostasis in terms of control theory, reviewing control theory’s applications to related issues in physiology, motor control, and decision making. We synthesize these by relating them to the important properties of allostatic regulation as a control problem. We then sketch a novel formalism for how the brain might perform allostatic control of the viscera by analogy to skeletomotor control, including a mathematical view on how interoception acts as performance feedback for allostasis. Finally, we suggest ways to test implications of our hypotheses.


2002 ◽  
Vol 205 (11) ◽  
pp. 1519-1530 ◽  
Author(s):  
Malcolm Burrows ◽  
Harald Wolf

SUMMARYThe false stick insect Prosarthria teretrirostris looks and behaves like a real stick insect but can jump and kick rapidly and powerfully like a locust, to which it is more closely related. It has an elongated body with slender hind legs that are some 2.5 times longer than the front and middle legs. A male with a body 67 mm long and weighing 0.28 g can jump 90 cm with a take-off angle of 40° and velocity of 2.5 ms-1,requiring an energy expenditure of 850 μJ. The body is accelerated at 165 ms-2 for only 30 ms. The larger and heavier females (mean body length 104 mm and weighing 1.5 g) can jump on average a distance of 49 cm.During jumping, the tibiae of the hind legs are extended in 30 ms with maximum rotational velocities of 11.5° per ms, but during kicking, when there is no body weight to support, extension is complete in 7 ms with rotational velocities as high as 48° per ms. The short time available to accelerate the body indicates that the movements are not powered by direct muscle contractions and that there must be storage of elastic energy in advance. The motor patterns responsible for generating the necessary forces in the hind legs for jumping and kicking are similar and consist of three phases;an initial flexion of the tibia is followed by a co-contraction of the small flexor and large extensor tibiae muscles lasting several hundred milliseconds while the tibia remains fully flexed. Finally, the flexor motor neurons stop spiking so that the tibia is able to extend rapidly. The small semi-lunar processes at the femoro-tibial joints are not distorted, so that they cannot act as energy stores. Some 7% of the energy is stored transiently by bending the thin tibiae during the initial acceleration phase of a jump and releasing it just before take-off.The jumping and kicking mechanisms of Prosarthria teretrirostrishave features in common with those used by locusts but also have their own characteristics. The evolution of jumping in Orthoptera is discussed in this context.


Author(s):  
M.P. Sutunkova ◽  
B.A. Katsnelson ◽  
L.I. Privalova ◽  
S.N. Solovjeva ◽  
V.B. Gurvich ◽  
...  

We conducted a comparative assessment of the nickel oxide nanoparticles toxicity (NiO) of two sizes (11 and 25 nm) according to a number of indicators of the body state after repeated intraperitoneal injections of these particles suspensions. At equal mass doses, NiO nanoparticles have been found to cause various manifestations of systemic subchronic toxicity with a particularly pronounced effect on liver, kidney function, the body’s antioxidant system, lipid metabolism, white and red blood, redox metabolism, spleen damage, and some disorders of nervous activity allegedly related to the possibility of nickel penetration into the brain from the blood. The relationship between the diameter and toxicity of particles is ambiguous, which may be due to differences in toxicokinetics, which is controlled by both physiological mechanisms and direct penetration of nanoparticles through biological barriers and, finally, unequal solubility.


Sign in / Sign up

Export Citation Format

Share Document