Analytics

Author(s):  
Mark E. Frisse ◽  
Karl E. Misulis

Healthcare analytics is a subject important to all informatics professionals, from providers to payers to regulators. The analysis of clinical and administrative data is essential to quality improvement, cost management, and research. With the advent of large data sets and sophisticated machine learning techniques, options are growing. Often, the weakness of an analytic approach is more due to a failure to ask a question that leads to clinical action or an inability to answer a question because the data available are not sufficient in either quality or quantity to address the primary concerns. Effective clinical informatics professionals focus on questions for which the data are sufficient and where answers can yield to improved actions.

2018 ◽  
Vol 3 ◽  
Author(s):  
Andreas Baumann

Machine learning is a powerful method when working with large data sets such as diachronic corpora. However, as opposed to standard techniques from inferential statistics like regression modeling, machine learning is less commonly used among phonological corpus linguists. This paper discusses three different machine learning techniques (K nearest neighbors classifiers; Naïve Bayes classifiers; artificial neural networks) and how they can be applied to diachronic corpus data to address specific phonological questions. To illustrate the methodology, I investigate Middle English schwa deletion and when and how it potentially triggered reduction of final /mb/ clusters in English.


2017 ◽  
Vol 10 (3) ◽  
pp. 660-663
Author(s):  
L. Dhanapriya ◽  
Dr. S. MANJU

In the recent development of IT technology, the capacity of data has surpassed the zettabyte, and improving the efficiency of business is done by increasing the ability of predictive through an efficient analysis on these data which has emerged as an issue in the current society. Now the market needs for methods that are capable of extracting valuable information from large data sets. Recently big data is becoming the focus of attention, and using any of the machine learning techniques to extract the valuable information from the huge data of complex structures has become a concern yet an urgent problem to resolve. The aim of this work is to provide a better understanding of this Machine Learning technique for discovering interesting patterns and introduces some machine learning algorithms to explore the developing trend.


2022 ◽  
pp. 27-50
Author(s):  
Rajalaxmi Prabhu B. ◽  
Seema S.

A lot of user-generated data is available these days from huge platforms, blogs, websites, and other review sites. These data are usually unstructured. Analyzing sentiments from these data automatically is considered an important challenge. Several machine learning algorithms are implemented to check the opinions from large data sets. A lot of research has been undergone in understanding machine learning approaches to analyze sentiments. Machine learning mainly depends on the data required for model building, and hence, suitable feature exactions techniques also need to be carried. In this chapter, several deep learning approaches, its challenges, and future issues will be addressed. Deep learning techniques are considered important in predicting the sentiments of users. This chapter aims to analyze the deep-learning techniques for predicting sentiments and understanding the importance of several approaches for mining opinions and determining sentiment polarity.


2020 ◽  
Vol 6 ◽  
Author(s):  
Jaime de Miguel Rodríguez ◽  
Maria Eugenia Villafañe ◽  
Luka Piškorec ◽  
Fernando Sancho Caparrini

Abstract This work presents a methodology for the generation of novel 3D objects resembling wireframes of building types. These result from the reconstruction of interpolated locations within the learnt distribution of variational autoencoders (VAEs), a deep generative machine learning model based on neural networks. The data set used features a scheme for geometry representation based on a ‘connectivity map’ that is especially suited to express the wireframe objects that compose it. Additionally, the input samples are generated through ‘parametric augmentation’, a strategy proposed in this study that creates coherent variations among data by enabling a set of parameters to alter representative features on a given building type. In the experiments that are described in this paper, more than 150 k input samples belonging to two building types have been processed during the training of a VAE model. The main contribution of this paper has been to explore parametric augmentation for the generation of large data sets of 3D geometries, showcasing its problems and limitations in the context of neural networks and VAEs. Results show that the generation of interpolated hybrid geometries is a challenging task. Despite the difficulty of the endeavour, promising advances are presented.


Author(s):  
Gediminas Adomavicius ◽  
Yaqiong Wang

Numerical predictive modeling is widely used in different application domains. Although many modeling techniques have been proposed, and a number of different aggregate accuracy metrics exist for evaluating the overall performance of predictive models, other important aspects, such as the reliability (or confidence and uncertainty) of individual predictions, have been underexplored. We propose to use estimated absolute prediction error as the indicator of individual prediction reliability, which has the benefits of being intuitive and providing highly interpretable information to decision makers, as well as allowing for more precise evaluation of reliability estimation quality. As importantly, the proposed reliability indicator allows the reframing of reliability estimation itself as a canonical numeric prediction problem, which makes the proposed approach general-purpose (i.e., it can work in conjunction with any outcome prediction model), alleviates the need for distributional assumptions, and enables the use of advanced, state-of-the-art machine learning techniques to learn individual prediction reliability patterns directly from data. Extensive experimental results on multiple real-world data sets show that the proposed machine learning-based approach can significantly improve individual prediction reliability estimation as compared with a number of baselines from prior work, especially in more complex predictive scenarios.


The Intrusion is a major threat to unauthorized data or legal network using the legitimate user identity or any of the back doors and vulnerabilities in the network. IDS mechanisms are developed to detect the intrusions at various levels. The objective of the research work is to improve the Intrusion Detection System performance by applying machine learning techniques based on decision trees for detection and classification of attacks. The methodology adapted will process the datasets in three stages. The experimentation is conducted on KDDCUP99 data sets based on number of features. The Bayesian three modes are analyzed for different sized data sets based upon total number of attacks. The time consumed by the classifier to build the model is analyzed and the accuracy is done.


2019 ◽  
Vol 119 (3) ◽  
pp. 676-696 ◽  
Author(s):  
Zhongyi Hu ◽  
Raymond Chiong ◽  
Ilung Pranata ◽  
Yukun Bao ◽  
Yuqing Lin

Purpose Malicious web domain identification is of significant importance to the security protection of internet users. With online credibility and performance data, the purpose of this paper to investigate the use of machine learning techniques for malicious web domain identification by considering the class imbalance issue (i.e. there are more benign web domains than malicious ones). Design/methodology/approach The authors propose an integrated resampling approach to handle class imbalance by combining the synthetic minority oversampling technique (SMOTE) and particle swarm optimisation (PSO), a population-based meta-heuristic algorithm. The authors use the SMOTE for oversampling and PSO for undersampling. Findings By applying eight well-known machine learning classifiers, the proposed integrated resampling approach is comprehensively examined using several imbalanced web domain data sets with different imbalance ratios. Compared to five other well-known resampling approaches, experimental results confirm that the proposed approach is highly effective. Practical implications This study not only inspires the practical use of online credibility and performance data for identifying malicious web domains but also provides an effective resampling approach for handling the class imbalance issue in the area of malicious web domain identification. Originality/value Online credibility and performance data are applied to build malicious web domain identification models using machine learning techniques. An integrated resampling approach is proposed to address the class imbalance issue. The performance of the proposed approach is confirmed based on real-world data sets with different imbalance ratios.


2020 ◽  
Author(s):  
Yosoon Choi ◽  
Jieun Baek ◽  
Jangwon Suh ◽  
Sung-Min Kim

<p>In this study, we proposed a method to utilize a multi-sensor Unmanned Aerial System (UAS) for exploration of hydrothermal alteration zones. This study selected an area (10m × 20m) composed mainly of the andesite and located on the coast, with wide outcrops and well-developed structural and mineralization elements. Multi-sensor (visible, multispectral, thermal, magnetic) data were acquired in the study area using UAS, and were studied using machine learning techniques. For utilizing the machine learning techniques, we applied the stratified random method to sample 1000 training data in the hydrothermal zone and 1000 training data in the non-hydrothermal zone identified through the field survey. The 2000 training data sets created for supervised learning were first classified into 1500 for training and 500 for testing. Then, 1500 for training were classified into 1200 for training and 300 for validation. The training and validation data for machine learning were generated in five sets to enable cross-validation. Five types of machine learning techniques were applied to the training data sets: k-Nearest Neighbors (k-NN), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Deep Neural Network (DNN). As a result of integrated analysis of multi-sensor data using five types of machine learning techniques, RF and SVM techniques showed high classification accuracy of about 90%. Moreover, performing integrated analysis using multi-sensor data showed relatively higher classification accuracy in all five machine learning techniques than analyzing magnetic sensing data or single optical sensing data only.</p>


Machine learning is a technology which with accumulated data provides better decisions towards future applications. It is also the scientific study of algorithms implemented efficiently to perform a specific task without using explicit instructions. It may also be viewed as a subset of artificial intelligence in which it may be linked with the ability to automatically learn and improve from experience without being explicitly programmed. Its primary intention is to allow the computers learn automatically and produce more accurate results in order to identify profitable opportunities. Combining machine learning with AI and cognitive technologies can make it even more effective in processing large volumes human intervention or assistance and adjust actions accordingly. It may enable analyzing the huge data of information. It may also be linked to algorithm driven study towards improving the performance of the tasks. In such scenario, the techniques can be applied to judge and predict large data sets. The paper concerns the mechanism of supervised learning in the database systems, which would be self driven as well as secure. Also the citation of an organization dealing with student loans has been presented. The paper ends discussion, future direction and conclusion.


Sign in / Sign up

Export Citation Format

Share Document