Panhypopituitarism

Author(s):  
Diane Donegan ◽  
Irina Bancos

Hypopituitarism is defined as a deficiency in 1 or more pituitary hormones. The pituitary gland is composed of the anterior pituitary, which originates from an invagination of the oral ectoderm and forms the Rathke pouch, and the posterior pituitary, which is derived from the neural ectoderm of the diencephalon. The anterior pituitary is composed of 5 types of hormone-producing cells: Somatotrophs produce growth hormone; gonadotrophs, follicle-stimulating hormone and luteinizing hormone; thyrotrophs, thyrotropin; 4 lactotrophs, prolactin; and corticotrophs, corticotropin. Identification of hypopituitarism is important because of its association with premature death due to respiratory and cardiovascular complications.

2019 ◽  
Vol 20 (19) ◽  
pp. 4914 ◽  
Author(s):  
Skowronski ◽  
Mlotkowska ◽  
Tanski ◽  
Lepiarczyk ◽  
Kempisty ◽  
...  

This study aimed to examine the effect of follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), and growth hormone (GH) on Aquaporin 5 (AQP5) expression in granulosa (Gc) and theca cells (Tc) from medium (MF) and large (LF) ovarian follicles of pigs. The results showed that GH significantly decreased the expression of AQP5 in Gc from MF in relation to the control. In the Gc of large follicles, PRL stimulated the expression of AQP5. However, the increased expression of AQP5 in the Tc of LF was indicated by GH and PRL in relation to the control. A significantly higher expression of the AQP5 protein in the Gc from MF and LF was indicated by FSH and PRL. In co-cultures, an increased expression of AQP5 was observed in the Gc from LF incubated with LH, PRL, and GH. A significantly increased expression of AQP5 was also observed in co-cultures of Tc from all type of follicles incubated with LH, whereas PRL stimulated the expression of AQP5 in Tc from MF. Moreover, AQP5 protein expression increased in the co-culture isolated from MF and LF after treatment with FSH, LH, PRL, and GH. AQP5 immunoreactivity was observed in the cytoplasm, mainly in the perinuclear region and endosomes, as well as in the cell membranes of Gc and Tc from the LF and MF.


1970 ◽  
Vol 63 (2) ◽  
pp. 378-384 ◽  
Author(s):  
D. R. Hodges ◽  
W. H. McShan

ABSTRACT Electrophoretic analyses of rat, mouse, human and cow anterior pituitary homogenates with subsequent bioassays for hormonal activity have been reported. Comparison of the behaviour of the hormonal activities from rat anterior pituitary secretory granules and that reported for pituitary homogenates was made following disc electrophoresis on polyacrylamide gels. Bioassays of gel segments for the six anterior pituitary hormones resulted in the localization of the activities of five of the six hormones. ACTH activity was not detected. Growth hormone and prolactin were associated with the major cathodal and anodal discs respectively. Luteinizing hormone and thyroid stimulating hormone activities had similar mobilities and were located in a zone just above growth hormone. The activity was not restricted to a discrete, stainable disc in either case. Follicle stimulating hormone activity was detected in a narrow segment containing only one disc a few millimeters below growth hormone. Comparison of the mobilities of the hormones from homogenates and secretory granule extracts suggests that they have essentially similar electrophoretic characteristics at basis pH.


2013 ◽  
pp. 551-566
Author(s):  
John Reynard ◽  
Simon Brewster ◽  
Suzanne Biers

Male reproductive physiology 552 Aetiology and evaluation of male infertility 554 Investigation of male infertility 556 Oligozoospermia and azoospermia 560 Varicocele 562 Treatment options for male infertility 564 The hypothalamus secretes luteinizing hormone-releasing hormone (LHRH), also known as gonadotrophin-releasing hormone (GnRH). This causes the pulsatile release of anterior pituitary gonadotrophins called follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which act on the testis. FSH stimulates the seminiferous tubules to secrete inhibin and produce sperm; LH acts on Leydig cells to produce testosterone (...


Author(s):  
Mone Zaidi ◽  
Li Sun ◽  
Peng Liu ◽  
Terry F. Davies ◽  
Maria New ◽  
...  

AbstractPituitary hormones have traditionally been thought to exert specific, but limited function on target tissues. More recently, the discovery of these hormones and their receptors in organs such as the skeleton suggests that pituitary hormones have more ubiquitous functions. Here, we discuss the interaction of growth hormone (GH), follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), adrenocorticotrophic hormone (ACTH), prolactin, oxytocin and arginine vasopressin (AVP) with bone. The direct skeletal action of pituitary hormones therefore provides new insights and therapeutic opportunities for metabolic bone diseases, prominently osteoporosis.


1986 ◽  
Vol 64 (9) ◽  
pp. 1259-1262 ◽  
Author(s):  
John S. D. Chan ◽  
Jie-Ying Deng ◽  
Anoop K. Brar ◽  
Nabil G. Seidah ◽  
Michel Chrétien

We have recently purified a novel pituitary polypeptide designated 7B2. By raising polyclonal antibodies to a synthetic 7B2 fragment in rabbits, we have developed a sensitive and specific radioimmunoassay for this novel polypeptide, and it has been used for the study of the release of immunoreactive 7B2 from rat anterior pituitary cells in vitro. In addition, immunocytochemical study shows that 7B2 is present in the gonadotropin cells of rat anterior pituitary. The aim of the present studies is to investigate the effect of human β-inhibin, testosterone, and combined testosterone plus human β-inhibin on the induced release of immunoreactive 7B2, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in rat anterior pituitary cell culture in vitro. Our results show that both human β-inhibin and testosterone effectively suppress the stimulatory effect of luteinizing hormone-releasing hormone (LHRH) on immunoreactive 7B2, FSH, and LH release. The present data indicate that the regulation of secretion of 7B2 and pituitary gonadotropins may be under a similar type of feedback mechanism.


Sign in / Sign up

Export Citation Format

Share Document