Future treatments

Author(s):  
Rebecca Thursfield ◽  
Chris Orchard ◽  
Rosanna Featherstone ◽  
Jane C Davies

There are only a relatively limited armoury of drugs, the majority of which are aimed at downstream symptoms of cystic fibrosis. Therapies targeting the basic defect in CF as well as continued availability of more conventional drugs are required. Progress in gene therapy has been limited by the significant barriers to gene transfer of the CF lung, but the UK is hosting a large repeated dose trial of nebulized non-viral gene therapy designed around clinically meaningful outcomes. The UK CF Gene Therapy Consortium is also seeking to develop a promising modified lentiviral approach, although this is some years off. Perhaps the exciting development of recent decades has come from small molecule CFTR modulators, driven by an understanding of basic pathophysiological mechanisms. Ivacaftor is the first drug to be licensed, having proved itself highly clinically efficacious in patients with the class-3 gating mutation G551D. The trial pipeline seeks to expand indications for this and to explore the potential of Phe508del correctors. Finally, a number of anti-inflammatory and anti-infective strategies are being pursued. The emerging global problem of antibiotic resistance is leading to exciting alternatives such as biofilm disruption and bacteriophage to be explored.

Thorax ◽  
2012 ◽  
Vol 67 (Suppl 2) ◽  
pp. A58.2-A58
Author(s):  
EWFW Alton ◽  
D Ashby ◽  
C Boyd ◽  
S Cheng ◽  
S Cunningham ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 771
Author(s):  
Julen Rodríguez-Castejón ◽  
Ana Alarcia-Lacalle ◽  
Itziar Gómez-Aguado ◽  
Mónica Vicente-Pascual ◽  
María Ángeles Solinís Aspiazu ◽  
...  

Fabry disease (FD) is a monogenic X-linked lysosomal storage disorder caused by a deficiency in the lysosomal enzyme α-Galactosidase A (α-Gal A). It is a good candidate to be treated with gene therapy, in which moderately low levels of enzyme activity should be sufficient for clinical efficacy. In the present work we have evaluated the efficacy of a non-viral vector based on solid lipid nanoparticles (SLN) to increase α-Gal A activity in an FD mouse model after intravenous administration. The SLN-based vector incremented α-Gal A activity to about 10%, 15%, 20% and 14% of the levels of the wild-type in liver, spleen, heart and kidney, respectively. In addition, the SLN-based vector significantly increased α-Gal A activity with respect to the naked pDNA used as a control in plasma, heart and kidney. The administration of a dose per week for three weeks was more effective than a single-dose administration. Administration of the SLN-based vector did not increase liver transaminases, indicative of a lack of toxicity. Additional studies are necessary to optimize the efficacy of the system; however, these results reinforce the potential of lipid-based nanocarriers to treat FD by gene therapy.


Author(s):  
Hyung‐Ok Lee ◽  
Christiana O. Salami ◽  
Dolan Sondhi ◽  
Stephen M. Kaminsky ◽  
Ronald G. Crystal ◽  
...  

2010 ◽  
Vol 18 (8) ◽  
pp. 1422-1429 ◽  
Author(s):  
Dmitry M Shayakhmetov ◽  
Nelson C Di Paolo ◽  
Karen L Mossman

RSC Advances ◽  
2018 ◽  
Vol 8 (22) ◽  
pp. 12104-12115 ◽  
Author(s):  
Ke Men ◽  
Rui Zhang ◽  
Xueyan Zhang ◽  
Rong Huang ◽  
Guonian Zhu ◽  
...  

Liposome–protamine complex delivered VSVMP mRNA efficiently inhibits C26 colon carcinoma with safety, providing an alternative strategy for non-viral gene therapy.


2001 ◽  
Vol 6 (4) ◽  
pp. 165-166 ◽  
Author(s):  
Janet Fricker

2011 ◽  
Vol 35 (3) ◽  
pp. 226 ◽  
Author(s):  
Junghae Ko ◽  
Haejung Jun ◽  
Hyesook Chung ◽  
Changshin Yoon ◽  
Taekyoon Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document