Pituitary tumours

Author(s):  
Kanna Gnanalingham ◽  
Zsolt Zador ◽  
Tara Kearney ◽  
Federico Roncaroli ◽  
H. Rao Gattamaneni

The pituitary gland occupies the sella turcica, approximately 5 cm posterior to the tip of the nose in the midline of the skull base. It is closely related to the hypothalamus and third ventricle superiorly, chiasm and lamina terminalis anterosuperiorly, sphenoid sinus anteroinferiorly, cavernous sinus and cavernous segment of the carotid artery laterally, the posterior clinoids and clivus posteriorly. There are two distinct components to the pituitary gland, the anterior and posterior lobe, which are derived from the ectoderm and neuroectoderm, respectively. The anterior pituitary constitutes 80% of the gland mass and in the horizontal plane it is distributed into two lateral wings. The hormones produced by the anterior pituitary are adrenocorticotropic hormone, prolactin, growth hormone, thyroid-stimulating hormone, follicle-stimulating hormone, and luteinizing hormone. This chapter looks in detail at the role of the pituitary gland, what happens when it becomes tumorous, and the recommended treatment avenues.

PEDIATRICS ◽  
1977 ◽  
Vol 59 (6) ◽  
pp. 948-950
Author(s):  
David R. Brown ◽  
J. Michael McMillin

We have previously reported a case of anterior pituitary insufficiency in a 14-year-old girl following closed head trauma.1 Endocrine evaluation one year after her accident revealed hypopituitarism manifested by cachexia, hypothyroidism, hypogonadism, and hypoadrenocorticism. Laboratory studies demonstrated deficiencies of adrenocorticotropic hormone, thyroid-stimulating hormone (TSH), growth hormone, and gonadotropic hormones (follicle-stimulating hormone and luteinizing hormone). We postulated that her hypopituitarism was due to anterior pituitary gland destruction rather than stalk section or hypothalamic damage. We have recently measured her serum prolactin concentrations following provocative stimulation with thyrotropin-releasing hormone (TRH), and these results strengthen the evidence for direct anterior pituitary gland destruction and provide a more complete delineation of her endocrinologic function.


Author(s):  
Stevan R. Emmett ◽  
Nicola Hill ◽  
Federico Dajas-Bailador

The pituitary gland (hypophysis) is an endocrine organ located at the base of the skull in a bony recess, called the sella turcica, consisting primarily of an anterior (adenohypophysis) and posterior (neurohypophysis) lobe. Collectively, under the influence of the hypothalamus, these lobes control the hormone secretions responsible for growth, reproduction, behaviour/ emotion, metabolism, and homeostasis, via a complex interplay of feedback loops. Dysfunction through failed synthesis of hormones, ‘breaks’ in the feedback pathways, or receptor malfunction can have diverse effects on plasma hormone levels and, hence, end organ function. The hypothalamus is located within the base of the third ventricle in the diencephalon and is responsible for maintaining homeostasis, as well as influencing emo­tion and behaviour. It is linked to the pituitary gland, which sits outside the dura, via the pituitary stalk and the hypothalamic– hypophyseal portal system. The anterior pituitary lobe makes up about 80% of the pituitary gland and is linked indirectly to the hypothalamus. It receives hormones released from neurosecretory cells in the paraventricular region of the hypothalamus, via a dense network of capillaries that make up the hypothalamic– hypophyseal portal system. These hormones subsequently bind to specific receptors on the pituitary cells to regulate a number of physio­logical processes including stress, growth, metabolism, reproduction, and lactation. There are six hormones re­leased by the anterior pituitary— adrenocorticotropic hormone (ACTH), growth hormone (GH), thyroid-stimulating hormone (TSH), follicle- stimulating hor­mone (FSH)/ luteinizing hormone (LH), and prolactin (PRH) (see Table 4.1). The posterior pituitary lobe is controlled via axons and nerve terminals that extend down from the hypothalamus through the pituitary stalk and into the lobe, which sub­sequently releases neurohormones (oxytocin and vaso­pressin) into the blood stream (see Table 4.2). Vasopressin (also called antidiuretic hormone, ADH), is essential in maintaining fluid homeostasis to ensure adequate blood volume and salt concentration. Its release is modulated by osmoreceptors (rising osmolality) in the hypothal­amus and baroreceptors (falling BP) in the cardiovascular system, and acts directly on the distal nephron to ensure water is conserved. Dysregulation of ADH may lead to conditions such as diabetes insipidus (DI) or SIADH (syn­drome of inappropriate ADH).


1994 ◽  
Vol 266 (1) ◽  
pp. E57-E61 ◽  
Author(s):  
A. Giustina ◽  
M. Licini ◽  
M. Schettino ◽  
M. Doga ◽  
G. Pizzocolo ◽  
...  

The aim of our study was to elucidate the physiological role of the neuropeptide galanin in the regulation of anterior pituitary function in human subjects. Six healthy men (age range 26-35 yr, body mass index range 20-24 kg/m2) underwent in random order 1) an intravenous bolus injection of growth hormone-releasing hormone (GHRH)-(1-29)-NH2 (100 micrograms) + thyrotropin-releasing hormone (TRH, 200 micrograms) + luteinizing hormone-releasing hormone (LHRH, 100 micrograms) + corticotropin-releasing hormone (CRH, 100 micrograms), and 2) intravenous saline (100 ml) at time 0 plus either human galanin (500 micrograms) in saline (100 ml) or saline (100 ml) from -15 to +30 min. Human galanin determined a significant increase in serum GH (GH peak: 11.3 +/- 2.2 micrograms/l) from both baseline and placebo levels. No significant differences were observed between GH values after galanin and those after GHRH alone (24.3 +/- 5.2 micrograms/l). Human galanin significantly enhanced the GH response to GHRH (peak 49.5 +/- 10 micrograms/l) with respect to either GHRH or galanin alone. Human galanin caused a slight decrease in baseline serum adrenocorticotropic hormone (ACTH; 16.3 +/- 2.4 pg/ml) and cortisol levels (8 +/- 1.5 micrograms/dl). Galanin also determined a slight reduction in both the ACTH (peak 27 +/- 8 pg/ml) and cortisol (peak 13.8 +/- 1.3 micrograms/dl) responses to CRH. Baseline and releasing hormone-stimulated secretions of prolactin, thyroid-stimulating hormone, LH, and follicle-stimulating hormone were not altered by galanin. Our data suggest a physiological role for the neuropeptide galanin in the regulation of GH secretion in humans.(ABSTRACT TRUNCATED AT 250 WORDS)


1980 ◽  
Vol 86 (2) ◽  
pp. 357-362 ◽  
Author(s):  
TAKAMURA MURAKI ◽  
TERUO NAKADATE ◽  
YUKIKO TOKUNAGA ◽  
RYUICHI KATO

Morphine reduced the release of thyroid-stimulating hormone (TSH) which was stimulated by exposure to cold and by thyroidectomy as well as reducing the basal level of TSH in the serum of male rats. The inhibitory effect of morphine was antagonized by naloxone which did not enhance the basal or cold-induced TSH release. Pretreatment with morphine did not reduce the release of TSH induced by exogenous thyrotrophin-releasing hormone (TRH) but enhanced it. This effect of morphine was also antagonized by naloxone. The above results suggested that the effect of morphine in reducing levels of serum TSH was not mediated by blocking the effect of TRH on the anterior pituitary gland, but that it was probably mediated by the inhibition of the release of TRH.


REPORTS ◽  
2021 ◽  
Vol 335 (1) ◽  
pp. 39-46
Author(s):  
V.G. Semenov ◽  
V.G. Tyurin ◽  
D.A. Baimukanov ◽  
E.P. Simurzina ◽  
S.G. Kondruchina ◽  
...  

The research was performed to identify the most effective bio immunostimulant. We used PS-2 and Prevention-N-E biologicals developed on the basis of the Chuvash State Agrarian University, as well as widely used in veterinary practice - PDE and E-selenium. Injection of PS-2 and Prevention-NE preparations to dry cows at a dose of 10.0 ml three times 45-40, 25-20 and 15-10 days before calving, as well as PDE and E-selenium at a dose of 20.0 and 10.0 ml 20 days before calving, respectively, prevents postpartum diseases. The mechanism of action of the PS-2 and Prevention-N-E drugs developed and tested by us is manifested, first of all, due to the consecutive processes of macrophage activation, as a result of the action of polysaccharide corpuscles and drug components on macrophage receptors. Secondly, information from the receptors of macrophages and chemoreceptors is transmitted along the afferent pathway to the cerebral cortex, then the signals go to the hypothalamus, which leads to liberin secretion by the nuclei of the ashen tuber of the hypothalamus. Liberins, in turn, increase the release of hormones by the anterior pituitary gland - the adenohypophysis. The anterior pituitary gland releases tropic hormones: somatotropic hormone, adrenocorticotropic hormone, thyroid-stimulating hormone, follicle-stimulating hormone, etc. These hormones are involved in metabolic processes in the body. Under the influence of preparations, in cows the time of membranes sweep was reduced, the risk of uterus subinvolution and endometritis decreased. In cows, the timing of the onset of estrus, the insemination rate, and the service period were shortened, and the conception rate increased in one estrus. In such a way, against the background of the use of biologicals with the help of nonspecific adaptive reactions, the body retains the relative constancy of the internal environment necessary for life - homeostasis, and it actively resists the adverse effects of the external environment, increasing its phylactic power. Consequently, new opportunities are opening up for the implementation of the reproductive and productive qualities of cattle due to the body immunoprophylaxis with complex biological products of a new generation.


1927 ◽  
Vol 23 (2) ◽  
pp. 239-243
Author(s):  
A. A. Sukhov

The pituitary gland or gl. pituitaria is an organ lying at the base of the brain in a cavity formed by the sella turcica at the front, back, and bottom, and by the sinus venosus cavernosus dex. et sin. This entire cavity is lined by the dura mater, which covers it from above in the form of diaphragma sellae turcicae. Through its opening passes the infundibulum, which connects the pituitary gland in its posterior lobe with the brain. The cavity infundibuli, which is a recess of the bottom of the third ventricle, in some animal species (e.g., in dogs) passes as recessus infundibuli into the cavity of the posterior pituitary lobe (in humans this lobe has no cavity).


Sign in / Sign up

Export Citation Format

Share Document