Managing spinal cord trauma

Author(s):  
Saksith Smithason ◽  
Bryan S. Lee ◽  
Edward C. Benzel

Spinal cord injury (SCI), either traumatic or non-traumatic in aetiology, leads to temporary or permanent damage to the spinal cord function. Significant efforts have been directed towards the elucidation of the underlying pathophysiology of SCI. Both primary and secondary mechanisms of SCI exist, leading to immediate and often irreversible cell damage. Immediate treatment and adequate management in the setting of acute SCI are essential, preservation of even a small amount of functional neuronal tissue can permit ambulation. SCI is associated with a prolonged hospital stay, rehabilitation stay, and often associated with enormous monetary costs. Neurological recovery after SCI is largely dependent on the extent of injury. The management of SCI and the determination of the role and timing of surgical decompression remain crucial and yet controversial. Further epidemiological research and studies are warranted in order to enhance healthcare planning and cost-effectiveness.

2014 ◽  
Vol 21 (3) ◽  
pp. 454-457 ◽  
Author(s):  
Timothy J. Kovanda ◽  
Eric M. Horn

Secondary injury following initial spinal cord trauma is uncommon and frequently attributed to mismanagement of an unprotected cord in the acute time period after injury. Subacute posttraumatic ascending myelopathy (SPAM) is a rare occurrence in the days to weeks following an initial spinal cord injury that is unrelated to manipulation of an unprotected cord and involves 4 or more vertebral levels above the original injury. The authors present a case of SPAM occurring in a 15-year-old boy who sustained a T3–4 fracture-dislocation resulting in a complete spinal cord injury, and they highlight the imaging findings and optimum treatment for this rare event.


1995 ◽  
Vol 81 (2) ◽  
pp. 120-126
Author(s):  
J R Broome

AbstractA minority of divers with neurological decompression illness (DCI) fail to improve with recompression treatment. This is particularly seen in cases where features of severe spinal cord injury develop soon after surfacing. Haemorrhage into the spinal cord is implicated in the pathogenesis of these cases, and evidence is presented that supports the view that the bleeding coincides with shrinkage of autochthonous bubbles. The role ofhyperbaric oxygen therapy in the treatment of spinal cord DCI is discussed with reference to posssible benefit in ischaernia-reperfusion (I-R) injury. Similarities and differences between thetissue injury of dysbaric and conventional spinal cord injury are outlined. The implications of advances in drug therapy for conventional spinal cord trauma are considered in the context of their potential application to treat neurological DCI.


2017 ◽  
Vol 28 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Dauda Abdullahi ◽  
Azlina Ahmad Annuar ◽  
Masro Mohamad ◽  
Izzuddin Aziz ◽  
Junedah Sanusi

AbstractIt has been shown that animal spinal cord compression (using methods such as clips, balloons, spinal cord strapping, or calibrated forceps) mimics the persistent spinal canal occlusion that is common in human spinal cord injury (SCI). These methods can be used to investigate the effects of compression or to know the optimal timing of decompression (as duration of compression can affect the outcome of pathology) in acute SCI. Compression models involve prolonged cord compression and are distinct from contusion models, which apply only transient force to inflict an acute injury to the spinal cord. While the use of forceps to compress the spinal cord is a common choice due to it being inexpensive, it has not been critically assessed against the other methods to determine whether it is the best method to use. To date, there is no available review specifically focused on the current compression methods of inducing SCI in rats; thus, we performed a systematic and comprehensive publication search to identify studies on experimental spinalization in rat models, and this review discusses the advantages and limitations of each method.


1979 ◽  
Vol 50 (3) ◽  
pp. 349-352 ◽  
Author(s):  
Alex S. Rivlin ◽  
Charles H. Tator

✓ The effect of papaverine, nitroprusside, or myelotomy on the recovery of spinal cord function was studied in rats after acute cord-compression injury. Spinal cord recovery was measured by a quantitative method of clinical assessment previously developed in our laboratory. Neither papaverine nor nitroprusside improved recovery of cord function. Dorsal midline myelotomy extending anteriorly as far as the central canal did not produce significant improvement (p > 0.05). However, when the myelotomy extended completely through the cord in the anteroposterior plane significant improvement (p < 0.01) was obtained.


1995 ◽  
Vol 24 (2) ◽  
pp. 128-139 ◽  
Author(s):  
JOAN R. COATES ◽  
DONALD C. SORJONEN ◽  
STEPHEN T. SIMPSON ◽  
NANCY R. COX ◽  
JAMES C. WRIGHT ◽  
...  

Author(s):  
Anja M. Raab ◽  
Sonja De Groot ◽  
Marcel W.M. Post ◽  
David J. Berlowitz ◽  
Jacinthe Adriaansen ◽  
...  

2021 ◽  
Vol 27 (1) ◽  
pp. 92-99
Author(s):  
Gary J. Farkas ◽  
Alicia Sneij ◽  
David R. Gater

Following a spinal cord injury (SCI), neurogenic obesity results from changes in body composition, physical impairment, and endometabolic physiology and when dietary intake exceeds energy expenditure. Given the postinjury reductions in lean body mass, sympathetic nervous system dysfunction, and anabolic deficiencies, energy balance is no longer in balance, and thereby an obesogenic environment is created that instigates cardiometabolic dysfunction. Accurate determination of metabolic rate can prevent excess caloric intake while promoting positive body habitus and mitigating obesity-related comorbidities. Metabolic rate as determined by indirect calorimetry (IC) has not been adopted in routine clinical care for persons with SCI despite several studies indicating its importance. This article reviews current literature on measured and predicted metabolic rate and energy expenditure after SCI and stresses the importance of IC as standard of care for persons with SCI.


Sign in / Sign up

Export Citation Format

Share Document