Lung Ventilation: Natural and Mechanical

Author(s):  
Yuan Lei

‘Lung Ventilation: Natural and Mechanical’ describes the processes of respiration and lung ventilation, focusing on those issues related directly to mechanical ventilation. The chapter starts by discussing the anatomy and physiology of respiration, and the involvement of the lungs and the entire respiratory system. It continues by introducing the three operating principles of mechanical ventilation. It then narrows its focus to intermittent positive pressure ventilation (IPPV), the operating principle of most modern critical care ventilators, explaining the pneumatic process of IPPV. The chapter ends by comparing natural and mechanical/artificial lung ventilation.

Author(s):  
Yuan Lei

Medical Ventilator System Basics: A clinical guide—unlike books that focus on clinical applications, or that provide specifics about individual ventilator models, this is a practical guide about the equipment used for positive pressure mechanical ventilation. This book provides the information a clinician needs every day: how to assemble a ventilator system, how to determine appropriate ventilator settings, how to make sense of monitored data, how to respond to alarms, and how to troubleshoot ventilation problems. The book applies to all ventilators based on the intermittent positive pressure ventilation (IPPV) operating principle. In a systematic and comprehensive way, the book steps the user through the ventilator system, starting with its pneumatic principles to an explanation of the anatomy and physiology of respiration. It describes the system components, including the ventilator, breathing circuit, humidifier, and nebulizer. The book then introduces ventilation modes, starting with an explanation of the building blocks of breath variables and breath types. It describes the major ventilator functions, including control parameters, monitoring, and alarms. Along the way the book provides much practical troubleshooting information. Clearly written and generously illustrated, the book is a handy reference for anyone involved with mechanical ventilation, clinicians and non-clinicians alike. It is suitable as a teaching aid for respiratory therapy education and as a practical handbook in clinical practice.


2018 ◽  
Vol 65 (4) ◽  
pp. 352-360 ◽  
Author(s):  
Mesut Dursun ◽  
Sinan Uslu ◽  
Ali Bulbul ◽  
Muhittin Celik ◽  
Umut Zubarioglu ◽  
...  

Abstract Aims To compare the effect of early nasal intermittent positive pressure ventilation (nIPPV) and nasal continuous positive airway pressure (nCPAP) in terms of the need for endotracheal ventilation in the treatment of respiratory distress syndrome (RDS) in preterm infants born between 24 and 32 gestational weeks. Methods This is a randomized, controlled, prospective, single-centered study. Forty-two infants were randomized to nIPPV and 42 comparable infants to nCPAP (birth weight 1356 ± 295 and 1359 ± 246 g and gestational age 29.2 ± 1.7 and 29.4 ± 1.5 weeks, respectively). Results The need for endotracheal intubation and invasive mechanical ventilation was significantly lower in the nIPPV group than the nCPAP group (11.9% and 40.5%, respectively, p < 0.05). There were no differences in the duration of total nasal respiratory support, duration of invasive mechanical ventilation, bronchopulmonary dysplasia or other early morbidities. Conclusion nIPPV compared with nCPAP reduced the need for endotracheal intubation and invasive mechanical ventilation in premature infants with RDS.


1986 ◽  
Vol 14 (3) ◽  
pp. 226-235 ◽  
Author(s):  
D. R. Hillman

The mechanical properties of the lungs and chest wall dictate the relationship between tidal volume, flow rate and airway pressure developed during intermittent positive pressure ventilation (IPPV). The increase in intrathoracic pressures associated with IPPV has consequences for the intrapulmonary distribution of ventilation and perfusion (hence gas exchange), cardiac output and regional blood flows. Barotrauma is a potential hazard. IPPV also affects the homeostatic mechanisms that keep the air spaces dry. Strategies to maximise the benefits and minimise the side effects of IPPV include positive end-expiratory pressure, intermittent mandatory ventilation, differential lung ventilation and high frequency ventilation. Understanding the physiological effects of IPPV and associated therapies allows a rational approach to the adjustment of ventilation against pulmonary, cardiovascular and systemic responses so as to optimise gas exchange and peripheral oxygen delivery.


2016 ◽  
Vol 62 (6) ◽  
pp. 568-574 ◽  
Author(s):  
Daniela Franco Rizzo Komatsu ◽  
Edna Maria de Albuquerque Diniz ◽  
Alexandre Archanjo Ferraro ◽  
Maria Esther Jurvest Rivero Ceccon ◽  
Flávio Adolfo Costa Vaz

Summary Objective: To analyze the frequency of extubation failure in premature infants using conventional mechanical ventilation (MV) after extubation in groups subjected to nasal intermittent positive pressure ventilation (nIPPV) and continuous positive airway pressure (nCPAP). Method: Seventy-two premature infants with respiratory failure were studied, with a gestational age (GA) ≤ 36 weeks and birth weight (BW) > 750 g, who required tracheal intubation and mechanical ventilation. The study was controlled and randomized in order to ensure that the members of the groups used in the research were chosen at random. Randomization was performed at the time of extubation using sealed envelopes. Extubation failure was defined as the need for re-intubation and mechanical ventilation during the first 72 hours after extubation. Results: Among the 36 premature infants randomized to nIPPV, six (16.6%) presented extubation failure in comparison to 11 (30.5%) of the 36 premature infants randomized to nCPAP. There was no statistical difference between the two study groups regarding BW, GA, classification of the premature infant, and MV time. The main cause of extubation failure was the occurrence of apnea. Gastrointestinal and neurological complications did not occur in the premature infants participating in the study. Conclusion: We found that, despite the extubation failure of the group of premature infants submitted to nIPPV being numerically smaller than in premature infants submitted to nCPAP, there was no statistically significant difference between the two modes of ventilatory support after extubation.


2017 ◽  
Vol 62 (4) ◽  
pp. 334
Author(s):  
K. PAVLIDOU (Κ. ΠΑΥΛΙΔΟΥ) ◽  
I. SAVVAS (Ι. ΣΑΒΒΑΣ) ◽  
T. ANAGNOSTOU (Τ. ΑΝΑΓΝΩΣΤΟΥ)

Mechanical ventilation is the process of supporting respiration by manual or mechanical means. When normal breathing is inefficient or has stopped, mechanical ventilation is life-saving and should be applied at once. The ventilator increases the patient's ventilation by inflating the lungs with oxygen or a mixture of air and oxygen. Ventilators play an important role in the anaesthetic management of patients, as well as in the treatment of patients in the ICU. However, there are differences between the anaesthetic ventilators and the ventilators in ICU. The main indication for mechanical ventilation is difficulty in ventilation and/or oxygenation of the patient because of any respiratory or other disease. The aims of mechanical ventilation are to supply adequate oxygen to patients with a limited vital capacity, to treat ventilatory failure, to reduce dyspnoea and to facilitate rest of fatigued breathing muscles. Depression of the central nervous system function is a pre-requirement for mechanical ventilation. Some times, opioids or muscle relaxants can be used in order to depress patient's breathing. Mechanical ventilation can be applied using many different modes: assisted ventilation, controlled ventilation, continuous positive pressure ventilation, intermittent positive pressure ventilation and jet ventilation. Furthermore, there are different types of automatic ventilators built to provide positive pressure ventilation in anaesthetized or heavily sedated or comatose patients: manual ventilators (Ambu-bag), volumecontrolled ventilators with pressure cycling, volume-controlled ventilators with time cycling and pressure-controlled ventilators. In veterinary practice, the ventilator should be portable, compact and easy to operate. The controls on most anaesthetic ventilators include settings for tidal volume, inspiratory time, inspiratory pressure, respiratory rate and inspiration: expiration (I:E) ratio. The initial settings should be between 10-20 ml/kg for tidal volume, 12-30 cmH2 0 for the inspiratory pressure and 8-15 breaths/min for the respiratory rate. Mechanical ventilation is a very important part of treatment in the ICU, but many problems may arise during application of mechanical ventilation in critically ill patients. All connections should be checked in advance and periodically for mechanical problems like leaks. Moreover, complications like lung injury, pneumonia, pneumothorax, myopathy and respiratory failure can occur during the course of mechanical ventilation causing difficulty in weaning.


2006 ◽  
Vol 42 (6) ◽  
pp. 477-480
Author(s):  
Robin L. Sereno

Mechanical ventilation has long been used to maintain ventilation in humans when the lungs are rendered incapable of oxygenation or when respiration is affected by central nervous system depression, but it has only recently been applied to similar cases in dogs and cats. Although manual ventilation is still the more common form of ventilation in dogs and cats, mechanical intermittent positive-pressure ventilation (IPPV) is a much more efficient and reliable means of maintaining the highest quality of respiratory assistance. With proper training, technicians can use IPPV to support compromised animals until they are capable of maintaining normal oxygen concentrations.


Sign in / Sign up

Export Citation Format

Share Document