Hypertrophic cardiomyopathy

Author(s):  
Nuno Cardim ◽  
Alexandra Toste ◽  
Robin Nijveldt

Imaging plays a major role in the evaluation of hypertrophic cardiomyopathy (HCM) patients, offering answers to clinical questions. Imaging techniques provide a broad spectrum of information, including morphological data, functional information, and ischaemia assessment, useful in many clinical settings of HCM. The clinical diagnosis of HCM is based on unexplained left ventricular hypertrophy (LVH) by imaging, though the role of genetic diagnosis has increased. A multimodality imaging (MMI) approach is encouraged in HCM. Each technique must be selected to provide solutions to the specific problems, avoiding duplicated data, and taking into account its technical characteristics, availability, benefits, risks, and costs.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Ethan Senser ◽  
Madison Hawkins ◽  
Eric M Williams ◽  
Lauren Gilstrap

Introduction: Left ventricular non-compaction (LVNC) is characterized by extensively trabeculaed myocardium adjacent to normal compacted myocardium of the left ventricle (LV). Hypertrophic cardiomyopathy (HCM) typically appears as diffuse or segmental LV hypertrophy, with or without outflow tract obstruction. Cardiac sarcomere mutations are present in most HCM cases and have also been identified in LVNC. Whether or not there is clinically significant phenotypic overlap between the two diseases is less well understood. We present a case of known HCM that met criteria for both LVNC and HCM by cardiac MRI. Case: A 49-year old man with HCM due to a c.3742_3759dup variant in MYBPC3 presented to clinic after an episode of syncope and ICD firing. In clinic, the device was interrogated and he was found to have had ventricular flutter which was successfully treated with one shock and a new, high (>20%) burden of premature ventricular beats. An echocardiogram showed a stable ejection fraction at 42%, mild concentric LV hypertrophy without obstruction and a newly dilated LV with an end diastolic diameter of 7.1cm (previously 6.2cm). A cardiac MRI was performed ( Figure ) and showed LV noncompaction and diffuse transmural and mid myocardial hyperenhancement/fibrosis of the septum, basilar lateral wall, anterior wall, and distal right ventricle consistent with patient's long-standing history of hypertrophic cardiomyopathy. Discussion: This case highlights the phenotypic overlap between HCM and LVNC by cardiac MRI. Had this patient not already carried a genetic diagnosis of HCM, he would likely have been diagnosed with LVNC based on this cardiac MRI. The phenotypic overlap in these diseases raises questions about ICD guidelines, the role of anticoagulation and prognosis.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
A. J. Ashwal ◽  
Sudhakar Rao Mugula ◽  
Jyothi Samanth ◽  
Ganesh Paramasivam ◽  
Krishnananda Nayak ◽  
...  

2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
F Loncaric ◽  
A Garcia-Alvarez ◽  
P Garcia-Canadilla ◽  
L Sanchiz ◽  
H Dejea ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – EU funding. Main funding source(s): Horizon 2020 European Commission Project H2020-MSCA-ITN-2016 (764738) and the Clinical Research in Cardiology grant from the Spanish Cardiac Society. Background The aetiology of left ventricular hypertrophy (LVH) is a relevant clinical challenge with consequences for patient management. Phenotypes resulting from hypertensive remodelling and sarcomere mutation often overlap. Synchrotron X-ray phase-contrast imaging (X-PCI) is a technique that can provide 3-dimensional detailed information on myocardial micro-structure non-destructively. The aim is to relate macrostructural/functional, non-invasive, imaging phenotypes of hypertrophic cardiomyopathy (HCM) to the underlying myocardial microstructure assessed with X-PCI. Methods Myocardial tissue samples were obtained from three patients (P1-3) with obstructive myocardial hypertrophy undergoing septal myectomy. Medical history and the 5-year HCM risk scores were evaluated. The patients were imaged with magnetic resonance imaging and echocardiography prior to procedure. Myocardial structure was assessed with wall thickness, late gadolinium enhancement (LGE), whereas function with speckle-tracking deformation (STE) and tissue Doppler imaging (TDI). Myectomy tissue was imaged with X-PCI in the TOMCAT beamline, using a multiscale propagation-based protocol combining a low-resolution (LR) and a high-resolution (HR) setup (5.8 and 0.7 um pixel size, respectively). Results The clinical and imaging data are shown in Fig 1. On initial assessment, wall thickness, LGE distribution, global longitudinal strain and septal TDI demonstrated a similar macrostructural and functional phenotype of P1 and P2, whereas P3 stood out with more severe hypertrophy, scarring and dysfunction. Additional regional deformation analysis with STE revealed reduced deformation in the basal and mid septum in P1, paired with a hypertensive pattern of post-systolic shortening (PSS) (yellow arrows). In comparison, in P2 and P3, deformation was more heterogeneous regionally, with regions of almost complete absence of deformation (orange arrows). Upon further exploration with TDI, areas with abnormal deformation were identified on the transition from basal to mid septum in both P2 and P3, whereas deformation was normal, but reduced in P1, and paired with PSS. LR X-PCI defined regions of interest to scan with HR (yellow frame), where HR revealed extensive interstitial fibrosis (orange arrow) with normal myocyte size and organisation in P1, compatible with severe hypertensive remodelling. However, in P2 and P3, patches of fibrosis (yellow arrow) paired with enlarged myocytes organized in visible disarray, considerably more prominent in P3, were both compatible with sarcomere-mutation HCM. Conclusion The results demonstrate multiscale phenotyping of HCM - relating micro- and macrostructural findings to function, and integrating multimodality data. In-depth regional deformation analysis, validated by synchrotron-based microstructural analysis, showed potential to identify distinct imaging phenotypes in HCM, distinguishing between overlapping presentations in different aetiologies. Abstract Figure 1


2021 ◽  
Vol 31 (1) ◽  
pp. 10-16
Author(s):  
Laura Tapoi ◽  
Alexandra Clement ◽  
Rodica Radu ◽  
Radu Sascau

Arrhythmogenic cardiomyopathy, as it has been recently redefi ned, is characterized by progressive myocyte loss with fibrosis and fat infiltration of the myocardium, which finally leads to a broad clinical spectrum ranging from heart failure symptoms to sudden cardiac death. The diagnosis of arrhythmogenic cardiomyopathy is challenging particularly because of its heterogeneity in presentation, which varies from focal right ventricular involvement to biventricular or prominent left ventricular phenotype. In the past decades, the development of new electrocardiographic and imaging diagnostic criteria for arrhythmogenic cardiomyopathy constituted an important area of research and resulted in the elaboration of the Padua criteria. However, even with the widespread availability of modern imaging techniques, there is still a lack of awareness in the health care community and this pathology persist in being under-or misdiagnosed. Given the limited indication of endomyocardial biopsy for the diagnosis of arrhythmogenic cardiomyopathy, one can conclude that the progress that has been made in the last few years in the multimodality imaging field is of utmost importance for the early detection and proper treatment of patients with arrhythmogenic cardiomyopathy, providing valuable prognostic information.


2021 ◽  
Vol 8 ◽  
Author(s):  
Vinithra Varadarajan ◽  
Mahsima Shabani ◽  
Bharath Ambale Venkatesh ◽  
Joao A. C. Lima

In this pandemic of Coronavirus disease 2019 (COVID-19), a vast proportion of healthcare resources, including imaging tools, have been dedicated to the management of affected patients; yet, the frequent reports of unknown presentations and complications of disease over time have been changing the usual standard of care and resource allocation in health centers. As of now, we have witnessed multisystemic symptoms requiring the collaboration of different clinical teams in COVID-19 patients' care. Compared to previous viral pandemics, imaging modalities are now playing an essential role in the diagnosis and management of patients. This widespread utility of imaging modalities calls for a deeper understanding of potential radiologic findings in this disease and identifying the most compatible imaging protocol with safety precautions. Although initially used for respiratory tract evaluation, imaging modalities have also been used for cardiovascular, neurologic, and gastrointestinal evaluation of patients with COVID-19. In this narrative review article, we provide multimodality and multisystemic review of imaging techniques and features that can aid in the diagnosis and management of COVID-19 patients.


Author(s):  
Hyun-Jung Lee ◽  
Hyung-Kwan Kim ◽  
Sang Chol Lee ◽  
Jihoon Kim ◽  
Jun-Bean Park ◽  
...  

Abstract Aims We investigated the prognostic role of left ventricular global longitudinal strain (LV-GLS) and its incremental value to established risk models for predicting sudden cardiac death (SCD) in patients with hypertrophic cardiomyopathy (HCM). Methods and results LV-GLS was measured with vendor-independent software at a core laboratory in a cohort of 835 patients with HCM (aged 56.3 ± 12.2 years) followed-up for a median of 6.4 years. The primary endpoint was SCD events, including appropriate defibrillator therapy, within 5 years after the initial evaluation. The secondary endpoint was a composite of SCD events, heart failure admission, heart transplantation, and all-cause mortality. Twenty (2.4%) and 85 (10.2%) patients experienced the primary and secondary endpoints, respectively. Lower absolute LV-GLS quartiles, especially those worse than the median (−15.0%), were associated with progressively higher SCD event rates (P = 0.004). LV-GLS was associated with an increased risk for the primary endpoint, independent of the LV ejection fraction, apical aneurysm, and 2014 European Society of Cardiology (ESC) risk score [adjusted hazard ratio (aHR) 1.14, 95% confidence interval (CI) 1.02–1.28] or 2011 American College of Cardiology/American Heart Association (ACC/AHA) risk factors (aHR 1.18, 95% CI 1.05–1.32). LV-GLS was also associated with a higher risk for the composite secondary endpoint (aHR 1.06, 95% CI 1.01–1.12). The addition of LV-GLS enhanced the performance of the ESC risk score (C-statistic 0.756 vs. 0.842, P = 0.007) and the 2011 ACC/AHA risk factor strategy (C-statistic 0.743 vs. 0.814, P = 0.007) for predicting SCD. Conclusion LV-GLS is an important prognosticator in patients with HCM and provides additional information to established risk stratification strategies for predicting SCD.


Author(s):  
Marta Sitges ◽  
Genevieve Derumeaux

Cardiac imaging techniques have an important role in the follow-up of patients undergoing cardiac resynchronization therapy (CRT) as they provide objective evidence of changes in cardiac dimensions and function. The role of echocardiography is well established in the assessment of left ventricular reverse remodelling and the evaluation of secondary (functional) mitral regurgitation. Additionally, echocardiography might be used for optimizing the programming of atrio-ventricular (AV) and inter-ventricular (VV) delays of current CRT devices. Acute benefits from this optimization have been demonstrated, but longer follow-up studies have failed to show a clear benefit of optimized CRT on top of simultaneous biventricular pacing on the outcome of patients with CRT. This chapter reviews the role of imaging in assessing follow-up and outcome of patients undergoing CRT, as well as the rationale, the methods used, and the clinical impact of optimization of the programming of CRT devices.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Archana Sivanandam ◽  
Karthik Ananthasubramaniam

We illustrate a case of midventricle obstructive HCM and apical aneurysm diagnosed with appropriate use of multimodality imaging. A 75-year-old African American woman presented with a 3-day history of chest pain and dyspnea with elevated troponins. Her electrocardiogram showed sinus rhythm, left atrial enlargement, left ventricular hypertrophy, prolonged QT, and occasional ectopy. After medical therapy optimization, she underwent coronary angiography for an initial diagnosis of non-ST segment elevation myocardial infarction. Her coronaries were unremarkable for significant disease but her left ventriculogram showed hyperdynamic contractility of the midportion of the ventricle along with a large dyskinetic aneurysmal apical sac. A subsequent transthoracic echocardiogram provided poor visualization of the apical region of the ventricle but contrast enhancement identified an aneurysmal pouch distal to the midventricular obstruction. To further clarify the diagnosis, cardiac magnetic resonance imaging with contrast was performed confirming the diagnosis of midventricular hypertrophic cardiomyopathy with apical aneurysm and fibrosis consistent with apical scar on delayed enhancement. The patient was medically treated and subsequently underwent elective implantable defibrillator placement in the ensuing months for recurrent nonsustained ventricular tachycardia and was initiated on prophylactic oral anticoagulation with warfarin for thromboembolic risk reduction.


2007 ◽  
Vol 112 (11) ◽  
pp. 577-582 ◽  
Author(s):  
Tetsuo Konno ◽  
Noboru Fujino ◽  
Kenshi Hayashi ◽  
Katsuharu Uchiyama ◽  
Eiichi Masuta ◽  
...  

Differences in the diagnostic value of a variety of definitions of negative T waves for HCM (hypertrophic cardiomyopathy) have not yet been clarified, resulting in a number of definitions being applied in previous studies. The aim of the present study was to determine the most accurate diagnostic definition of negative T waves for HCM in genotyped populations. Electrocardiographic and echocardiographic findings were analysed in 161 genotyped subjects (97 carriers and 64 non-carriers). We applied three different criteria that have been used in previous studies: Criterion 1, negative T wave >10 mm in depth in any leads; Criterion 2, negative T wave >3 mm in depth in at least two leads; and Criterion 3, negative T wave >1 mm in depth in at least two leads. Of the three criteria, Criterion 3 had the highest sensitivity (43% compared with 5 and 26% in Criterion 1 and Criterion 2 respectively; P<0.0001) and retained a specificity of 95%, resulting in the highest accuracy. In comparison with abnormal Q waves, negative T waves for Criterion 3 had a lower sensitivity in detecting carriers without LVH (left ventricular hypertrophy) (12.9% for negative T waves compared with 22.6% for abnormal Q waves). On the other hand, in detecting carriers with LVH, the sensitivity of negative T waves increased in a stepwise direction with the increasing extent of LVH (P<0.001), whereas there was less association between the sensitivity of abnormal Q waves and the extent of LVH. In conclusion, Criterion 3 for negative T waves may be the most accurate definition of HCM based on genetic diagnoses. Negative T waves may show different diagnostic value according to the different criteria and phenotypes in genotyped populations with HCM.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y Wasserstrum ◽  
E Itelman ◽  
R Barriales-Villa ◽  
X Fernandez-Fernandez ◽  
Y Adler ◽  
...  

Abstract Background Advanced hypertrophic cardiomyopathy (HCM) may be complicated by a dilated hypokinetic transformation. Reduced left ventricular ejection fraction (HFrEF) has been described in terms of specific risks of morbidity and mortality, and specifically in terms of increased risk for fatal arrhythmias. Nevertheless, recent publications have casted doubt regarding the role of arrhythmia in non-ischemic HFrEF and questioned the role of primary prevention strategies in these cases. Methods We've reviewed clinical characteristics of 883 patients age ≥40, diagnosed with HCM who were evaluated in the cardiomyopathy clinic in two tertiary medical centers in Israel and Spain. Results Forty-five patients (5%) suffered from hypokinetic transformation. They were younger at diagnosis (median 32 [IQR 24–55] vs. 49 [35–60], p&lt;0.001), had a lower body-mass index (28.4 [±4.7] vs. 26.0 [±3.9], p&lt;0.001), and suffered more from strokes (19% vs 6%, p&lt;0.001). They had lower had a lower NYHA class (p=0.001) and lower exercise capacity (7.3 [4.5–10.8] vs. 9.6 [6.7–12.0] METS, p&lt;0.001). Patients with hypokinetic HCM had higher rates of pacemaker and implanted defibrillator (ICD) implantations (41% vs 11%, p&lt;0.001) and (43% vs 13%, p&lt;0.001) respectively. These patients had a higher incidence of sustained ventricular tachyarrhythmias (14% vs 2%, p&lt;0.001). Among patients who had an ICD, patients suffering from hypokinetic transformation had received more appropriate ICD therapy (27% vs 12%, p&lt;0.001). These patients received more heart transplantations (13% vs 1%, p&lt;0.001), and had a trend for higher incidence rate of Sudden cardiac death (6% vs 2% p=0.06) and a higher 5-year mortality rates (21% vs. 5%, p&lt;0.001). Conclusions HCM patients suffering from hypokinetic transformation have lower functional and exercise capacities, are more likely to suffer from ventricular tachyarrhythmias and experience appropriate ICD therapy, and undergo heart transplantation. They also have a significantly lower 5-year survival. Five-year survival Funding Acknowledgement Type of funding source: None


Sign in / Sign up

Export Citation Format

Share Document