Neuroanatomical, neurochemical, and neurophysiological bases of waking and sleeping

Author(s):  
Barbara E. Jones

Neurons distributed through the reticular core of the brainstem, hypothalamus, and basal forebrain and giving rise to ascending projections to the cortex or descending projections to the spinal cord promote the changes in cortical activity and behavior that underlie the sleep–wake cycle and three states of waking, NREM (slow wave) sleep, and REM (paradoxical) sleep. Forming the basic units of these systems, glutamate and GABA cell groups are heterogeneous in discharge profiles and projections, such that different subgroups can promote cortical activation (wake/REM(PS)-active) versus cortical deactivation (NREM(SWS)-active) by ascending influences or behavioral arousal with muscle tone (wake-active) versus behavioral quiescence with muscle atonia (NREM/REM(PS)-active) by descending influences. These different groups are in turn regulated by neuromodulatory systems, including cortical activation (wake/REM(PS)-active acetylcholine neurons), behavioral arousal (wake-active noradrenaline, histamine, serotonin, and orexin neurons), and behavioral quiescence (NREM/REM(PS)-active MCH neurons). By different projections, chemical neurotransmitters and discharge profiles, distinct cell groups thus act and interact to promote cyclic oscillations in cortical activity and behavior forming the sleep-wake cycle and states.

2004 ◽  
Vol 92 (2) ◽  
pp. 1182-1198 ◽  
Author(s):  
Maan Gee Lee ◽  
Ian D. Manns ◽  
Angel Alonso ◽  
Barbara E. Jones

The basal forebrain has been shown to play an important role in cortical activation of wake and paradoxical sleep (PS), yet has also been posited to play a role in slow wave sleep (SWS). In an effort to determine whether these different roles may be fulfilled by different cell groups, including cholinergic and GABAergic cells, we recorded from 123 units in waking-sleeping, head-fixed rats using micropipettes to allow juxtacellular labeling. Functional sets of intermingled cell groups emerged as units whose discharge was as follows: 1) maximum in active wake (aW) and positively or not correlated with EEG gamma activity, while positively correlated with nuchal EMG activity, and thus potentially facilitatory for waking and behavioral arousal (12%); 2) maximum in SWS or SWS-PS and positively correlated with delta EEG activity, while not or negatively correlated with EMG activity, and thus potentially promotive for sleep with cortical slow wave activity and/or accompanying behavioral changes (16%); 3) maximum in PS or PS and aW and positively correlated with gamma and theta EEG activity, while negatively or not correlated with EMG activity, and thus potentially promotive for cortical activation during PS or PS and W (62%); and 4) equivalent across all states and thus not involved in state regulation (∼10%). Units of each group also manifested different firing patterns typified as slow tonic (19.5%), fast tonic (32.5%), or fast phasic (48%), including rhythmic bursting (6%). Through these diverse cell groups, the basal forebrain has the capacity to modulate cortical activity, behavior, and/or related physiological processes across the sleep-waking cycle and thereby regulate the sleep-wake state of the animal.


2017 ◽  
Vol 89 (4) ◽  
pp. 249-261 ◽  
Author(s):  
Ryan K. Tisdale ◽  
Alexei L. Vyssotski ◽  
John A. Lesku ◽  
Niels C. Rattenborg

The functions of slow wave sleep (SWS) and rapid eye movement (REM) sleep, distinct sleep substates present in both mammals and birds, remain unresolved. One approach to gaining insight into their function is to trace the evolution of these states through examining sleep in as many taxonomic groups as possible. The mammalian and avian clades are each composed of two extant groups, i.e., the monotremes (echidna and platypus) and therian (marsupial and eutherian [or placental]) mammals, and Palaeognaths (cassowaries, emus, kiwi, ostriches, rheas, and tinamous) and Neognaths (all other birds) among birds. Previous electrophysiological studies of monotremes and ostriches have identified a unique “mixed” sleep state combining features of SWS and REM sleep unlike the well-delineated sleep states observed in all therian mammals and Neognath birds. In the platypus this state is characterized by periods of REM sleep-related myoclonic twitching, relaxed skeletal musculature, and rapid eye movements, occurring in conjunction with SWS-related slow waves in the forebrain electroencephalogram (EEG). A similar mixed state was also observed in ostriches; although in addition to occurring during periods with EEG slow waves, reduced muscle tone and rapid eye movements also occurred in conjunction with EEG activation, a pattern typical of REM sleep in Neognath birds. Collectively, these studies suggested that REM sleep occurring exclusively as an integrated state with forebrain activation might have evolved independently in the therian and Neognath lineages. To test this hypothesis, we examined sleep in the elegant crested tinamou (Eudromia elegans), a small Palaeognath bird that more closely resembles Neognath birds in size and their ability to fly. A 24-h period was scored for sleep state based on electrophysiology and behavior. Unlike ostriches, but like all of the Neognath birds examined, all indicators of REM sleep usually occurred in conjunction with forebrain activation in tinamous. The absence of a mixed REM sleep state in tinamous calls into question the idea that this state is primitive among Palaeognath birds and therefore birds in general.


1979 ◽  
Vol 237 (1) ◽  
pp. R80-R88 ◽  
Author(s):  
S. Sakaguchi ◽  
S. F. Glotzbach ◽  
H. C. Heller

Unanesthetized, unrestrained kangaroo rats (Dipodomys) were studied to examine the changes in the frequency and duration of sleep states caused by long-term manipulations of hypothalamic temperature (Thy) at a thermoneutral (30 degrees C) and a low (20 degrees C) ambient temperature (Ta). A cold stimulus present in either the hypothalamus or the skin decreased both the total sleep time (TST) and the ratio of paradoxical sleep (PS) to TST. At a low Ta, TST, but not the PS-to-TST ratio, was increased by raising Thy, indicating that a cold peripheral stimulus could differentially inhibit PS. At a thermoneutral Ta, cooling Thy decreased both TST and the PS/TST. Changes in the amount of PS were due largely to changes in the frequency, but not the duration, of individual episodes of PS, suggesting that the transition to PS is partially dependent on the thermoregulatory conditions existing during slow-wave sleep (SWS). These results are consistent with the recent findings that the thermoregulatory system is functional during SWS but is inhibited or inactivated during PS.


2001 ◽  
Vol 281 (6) ◽  
pp. G1512-G1523 ◽  
Author(s):  
Mark K. Kern ◽  
Safwan Jaradeh ◽  
Ronald C. Arndorfer ◽  
Andrzej Jesmanowicz ◽  
James Hyde ◽  
...  

Cerebral cortical processing of information relayed via visceral afferents is poorly understood. We determined and compared cortical activity caused by various levels of rectal distension in healthy male and female subjects. Twenty-eight healthy, young (20–44 yr) volunteer subjects (13 male, 15 female) were studied with a paradigm-driven functional magnetic resonance imaging (fMRI) technique during barostat-controlled rectal distension at perception threshold and 10 mmHg below and above perception threshold. Male subjects showed localized clusters of fMRI activity primarily in the sensory and parietooccipital regions, whereas female subjects also showed activity in the anterior cingulate and insular regions. A progressive increase in maximum percent fMRI signal change and total volume of cortical activity was associated with the intensity of rectal distension pressure in both genders. Regions of cortical activity for below-threshold stimuli showed less substantial signal intensity and volume than responses for threshold and above-threshold stimuli. Volume of cortical activity during rectal distension in women was significantly higher than that for men for all distensions. We conclude that 1) there are substantial differences in female cortical activation topography during rectal distension compared with males; 2) intensity and volume of registered cortical activity due to rectal stimulation are directly related to stimulus strength; and 3) rectal stimulation below perception level is registered in the cerebral cortex.


SLEEP ◽  
2020 ◽  
Vol 43 (7) ◽  
Author(s):  
Sébastien Arthaud ◽  
Paul-Antoine Libourel ◽  
Pierre-Hervé Luppi ◽  
Christelle Peyron

Abstract Identifying the precise neuronal networks activated during paradoxical sleep (PS, also called REM sleep) has been a challenge since its discovery. Similarly, our understanding of the homeostatic mechanisms regulating PS, whether through external modulation by circadian and ultradian drives or via intrinsic homeostatic regulation, is still limited, largely due to interfering factors rendering the investigation difficult. Indeed, none of the studies published so far were able to manipulate PS without significantly altering slow-wave sleep and/or stress level, thus introducing a potential bias in the analyses. With the aim of achieving a better understanding of PS homeostasis, we developed a new method based on automated scoring of vigilance states—using electroencephalogram and electromyogram features—and which involves closed-loop PS deprivation through the induction of cage floor movements when PS is detected. Vigilance states were analyzed during 6 and 48 h of PS deprivation as well as their following recovery periods. Using this new automated methodology, we were able to deprive mice of PS with high efficiency and specificity, for short or longer periods of time, observing no sign of stress (as evaluated by plasma corticosterone level and sleep latency) and requiring no human intervention or environmental changes. We show here that PS can be homeostatically modulated and regulated while no significant changes are induced on slow-wave sleep and wakefulness, with a PS rebound duration depending on the amount of prior PS deficit. We also show that PS interval duration is not correlated with prior PS episode duration in the context of recovery from PS deprivation.


1998 ◽  
Vol 275 (4) ◽  
pp. R1127-R1137 ◽  
Author(s):  
Paul Franken ◽  
Alain Malafosse ◽  
Mehdi Tafti

The genetic variation in spontaneous rhythmic electroencephalographic (EEG) activity was assessed by the quantitative analysis of the EEG in six inbred mice strains. Mean spectral EEG profiles (0–25 Hz) over 24 h were obtained for paradoxical sleep (PS), slow-wave sleep (SWS), and wakefulness. A highly significant genotype-specific variation was found for theta peak frequency during both PS and SWS, which strongly suggests the presence of a gene with a major effect. The strain distribution of theta peak frequency during exploratory behavior differed from that during sleep. In SWS, the relative contributions of delta (1–4 Hz) and sigma (11–15) power to the EEG varied with genotype and power in both frequency bands was negatively correlated. In addition, the EEG dynamics at state transitions were analyzed with a 4-s resolution. The onset of PS, but not that of wakefulness, was preceded by a pronounced peak in high-frequency (>11 Hz) power. These findings are discussed in terms of the neurophysiological mechanisms underlying rhythm generation and their control and modulation by the brain stem reticular-activating system.


Author(s):  
Diego Orcioli-Silva ◽  
Rodrigo Vitório ◽  
Victor Spiandor Beretta ◽  
Núbia Ribeiro da Conceição ◽  
Priscila Nóbrega-Sousa ◽  
...  

Abstract Parkinson’s disease (PD) is often classified into tremor dominant (TD) and postural instability gait disorder (PIGD) subtypes. Degeneration of subcortical/cortical pathways is different between PD subtypes, which leads to differences in motor behavior. However, the influence of PD subtype on cortical activity during walking remains poorly understood. Therefore, we aimed to investigate the influence of PD motor subtypes on cortical activity during unobstructed walking and obstacle avoidance. Seventeen PIGD and 19 TD patients performed unobstructed walking and obstacle avoidance conditions. Brain activity was measured using a mobile functional near-infrared spectroscopy–electroencephalography (EEG) systems, and gait parameters were analyzed using an electronic carpet. Concentrations of oxygenated hemoglobin (HbO2) of the prefrontal cortex (PFC) and EEG absolute power from alpha, beta, and gamma bands in FCz, Cz, CPz, and Oz channels were calculated. These EEG channels correspond to supplementary motor area, primary motor cortex, posterior parietal cortex, and visual cortex, respectively. Postural instability gait disorder patients presented higher PFC activity than TD patients, regardless of the walking condition. Tremor dominant patients presented reduced beta power in the Cz channel during obstacle avoidance compared to unobstructed walking. Both TD and PIGD patients decreased alpha and beta power in the FCz and CPz channels. In conclusion, PIGD patients need to recruit additional cognitive resources from the PFC for walking. Both TD and PIGD patients presented changes in the activation of brain areas related to motor/sensorimotor areas in order to maintain balance control during obstacle avoidance, being that TD patients presented further changes in the motor area (Cz channel) to avoid obstacles.


Sign in / Sign up

Export Citation Format

Share Document