Neuropathology

Author(s):  
Peter Falkai ◽  
Bernhard Bogerts

The traditional domains of neuropathology are well-defined organic brain diseases with an obvious pathology, such as tumours, infections, vascular diseases, trauma, or toxic and hypoxemic changes, as well as degenerative brain diseases (e.g. Alzheimer's disease, Parkinson's disease, and Huntington's chorea). Neuropathological investigations of these brain disorders have been rewarding, because patients with any of these conditions can be expected to have gross morphological or more or less specific neurohistological anomalies related to the clinical symptoms of the disorders. Moreover, the type of brain pathology of these well-defined disease entities is quite homogenous. For example, it is highly unlikely that a patient with Parkinson's disease would not exhibit morphological changes and Lewy bodies in the nigrostriatal system, just as much a person with Huntington's chorea would have a normal striatum, or a patient with Pick'sor Alzheimer's disease would have no changes in the cerebralcortex. In contrast, the history of the neuropathology of psychiatric disorders outside primary degenerative diseases is much more controversial, because no such obvious and homogenous types of brain pathology (as seen in neurological disorders) have yet been detected for the major psychiatric illnesses such as schizophrenia, affective disorders, substance-related disorders, or personality disorders. The scope of this chapter is to summarize the neuropathological findings in schizophrenia, affective disorders, and alcoholism. Tables 2.3.5.1, 2.3.5.2, 2.3.5.3, and 2.3.5.4 highlight the significant findings. It goes beyond the scope of this chapter to review thelarge body of literature on the dementias, including specifically Alzheimer's disease. Concerning this matter, the reader is referred to several comprehensive reviews (e.g. Jellinger and Bancher 1998).

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Carlos Spuch ◽  
Carmen Navarro

Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease represent a huge unmet medical need. The prevalence of both diseases is increasing, but the efficacy of treatment is still very limited due to various factors including the blood brain barrier (BBB). Drug delivery to the brain remains the major challenge for the treatment of all neurodegenerative diseases because of the numerous protective barriers surrounding the central nervous system. New therapeutic drugs that cross the BBB are critically needed for treatment of many brain diseases. One of the significant factors on neurotherapeutics is the constraint of the blood brain barrier and the drug release kinetics that cause peripheral serious side effects. Contrary to common belief, neurodegenerative and neurological diseases may be multisystemic in nature, and this presents numerous difficulties for their potential treatment. Overall, the aim of this paper is to summarize the last findings and news related to liposome technology in the treatment of neurodegenerative diseases and demonstrate the potential of this technology for the development of novel therapeutics and the possible applications of liposomes in the two most widespread neurodegenerative diseases, Alzheimer's disease and Parkinson's disease.


2020 ◽  
Vol 18 (10) ◽  
pp. 758-768 ◽  
Author(s):  
Khadga Raj ◽  
Pooja Chawla ◽  
Shamsher Singh

: Tramadol is a synthetic analog of codeine used to treat pain of moderate to severe intensity and is reported to have neurotoxic potential. At therapeutic dose, tramadol does not cause major side effects in comparison to other opioid analgesics, and is useful for the management of neurological problems like anxiety and depression. Long term utilization of tramadol is associated with various neurological disorders like seizures, serotonin syndrome, Alzheimer’s disease and Parkinson’s disease. Tramadol produces seizures through inhibition of nitric oxide, serotonin reuptake and inhibitory effects on GABA receptors. Extensive tramadol intake alters redox balance through elevating lipid peroxidation and free radical leading to neurotoxicity and produces neurobehavioral deficits. During Alzheimer’s disease progression, low level of intracellular signalling molecules like cGMP, cAMP, PKC and PKA affect both learning and memory. Pharmacologically tramadol produces actions similar to Selective Serotonin Reuptake Inhibitors (SSRIs), increasing the concentration of serotonin, which causes serotonin syndrome. In addition, tramadol also inhibits GABAA receptors in the CNS has been evidenced to interfere with dopamine synthesis and release, responsible for motor symptoms. The reduced level of dopamine may produce bradykinesia and tremors which are chief motor abnormalities in Parkinson’s Disease (PD).


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Manan Binth Taj Noor ◽  
Nusrat Zerin Zenia ◽  
M Shamim Kaiser ◽  
Shamim Al Mamun ◽  
Mufti Mahmud

Abstract Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disorders accurately from the acquired neuroimaging data. This article critically examines and compares performances of the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and structural MRI. The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders. Towards the end, a number of current research challenges are indicated and some possible future research directions are provided.


2021 ◽  
pp. 155005942199714
Author(s):  
Lucia Zinno ◽  
Anna Negrotti ◽  
Chiara Falzoi ◽  
Giovanni Messa ◽  
Matteo Goldoni ◽  
...  

Introduction. An easily accessible and inexpensive neurophysiological technique such as conventional electroencephalography may provide an accurate and generally applicable biomarker capable of differentiating dementia with Lewy bodies (DLB) from Alzheimer’s disease (AD) and Parkinson’s disease-associated dementia (PDD). Method. We carried out a retrospective visual analysis of resting-state electroencephalography (EEG) recording of 22 patients with a clinical diagnosis of 19 probable and 3 possible DLB, 22 patients with probable AD and 21 with PDD, matched for age, duration, and severity of cognitive impairment. Results. By using the grand total EEG scoring method, the total score and generalized rhythmic delta activity frontally predominant (GRDAfp) alone or, even better, coupled with a slowing of frequency of background activity (FBA) and its reduced reactivity differentiated DLB from AD at an individual level with an high accuracy similar to that obtained with quantitative EEG (qEEG). GRDAfp alone could also differentiate DLB from PDD with a similar level of diagnostic accuracy. AD differed from PDD only for a slowing of FBA. The duration and severity of cognitive impairment did not differ between DLB patients with and without GRDAfp, indicating that this abnormal EEG pattern should not be regarded as a disease progression marker. Conclusions. The findings of this investigation revalorize the role of conventional EEG in the diagnostic workup of degenerative dementias suggesting the potential inclusion of GRDAfp alone or better coupled with the slowing of FBA and its reduced reactivity, in the list of supportive diagnostic biomarkers of DLB.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 371
Author(s):  
Patrycja Pawlik ◽  
Katarzyna Błochowiak

Many neurodegenerative diseases present with progressive neuronal degeneration, which can lead to cognitive and motor impairment. Early screening and diagnosis of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) are necessary to begin treatment before the onset of clinical symptoms and slow down the progression of the disease. Biomarkers have shown great potential as a diagnostic tool in the early diagnosis of many diseases, including AD and PD. However, screening for these biomarkers usually includes invasive, complex and expensive methods such as cerebrospinal fluid (CSF) sampling through a lumbar puncture. Researchers are continuously seeking to find a simpler and more reliable diagnostic tool that would be less invasive than CSF sampling. Saliva has been studied as a potential biological fluid that could be used in the diagnosis and early screening of neurodegenerative diseases. This review aims to provide an insight into the current literature concerning salivary biomarkers used in the diagnosis of AD and PD. The most commonly studied salivary biomarkers in AD are β-amyloid1-42/1-40 and TAU protein, as well as α-synuclein and protein deglycase (DJ-1) in PD. Studies continue to be conducted on this subject and researchers are attempting to find correlations between specific biomarkers and early clinical symptoms, which could be key in creating new treatments for patients before the onset of symptoms.


Sign in / Sign up

Export Citation Format

Share Document