Case 13.23

Author(s):  
Christine U. Lee ◽  
James F. Glockner

16-year-old male adolescent with an arrhythmia during elective surgery Axial end-systolic SSFP images (Figure 13.23.1) demonstrate small focal outpouchings along the free wall of the right ventricle. Axial double inversion recovery proton density-weighted FSE image (Figure 13.23.2) reveals minimal fatty replacement in the right side of the ventricular septum. Short-axis MDE image (...

Author(s):  
Christine U. Lee ◽  
James F. Glockner

46-year-old woman receiving chemotherapy and radiotherapy for cervical carcinoma diagnosed 6 months ago; she now has new-onset chest pain Axial double (Figure 13.30.1) and triple (Figure 13.30.2) inversion recovery FSE images with proton density- and T2-weighting demonstrate a poorly defined mass involving the anterior wall of the right atrium and free wall of the right ventricle. Short-axis contrast-enhanced LGE images (...


2004 ◽  
Vol 14 (5) ◽  
pp. 550-552 ◽  
Author(s):  
Samuel Menahem ◽  
Robert H. Anderson

We describe two cases of an isolated cleft of the mitral valve in transposition with intact ventricular septum. The cleft is positioned leftward in the pulmonary leaflet, at about 2 o’clock, when viewed from below looking at the cardiac short axis with the right ventricle to one’s left hand. Such clefts, when seen in the Taussig-Bing malformation are also positioned leftward.In keeping with our current knowledge of cardiac development, our cases provide further evidence that transposition with an intact ventricular septum is the end-point of the Taussig-Bing spectrum.


Author(s):  
Christine U. Lee ◽  
James F. Glockner

46-year-old man with a right ventricular mass detected incidentally on echocardiography A lobulated, well-defined mass in the right ventricular free wall demonstrates mild hyperintensity relative to myocardium on axial double inversion recovery proton density-weighted FSE (Figure 13.24.1) and short-axis SSFP (Figure ...


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J Vos ◽  
T Leiner ◽  
A.P.J Van Dijk ◽  
F.J Meijboom ◽  
G.T Sieswerda ◽  
...  

Abstract Introduction Precapillary pulmonary hypertension (pPH) causes right ventricular (RV) pressure overload inducing RV remodeling, often resulting in dysfunction and dilatation, heart failure, and ultimately death. The ability of the right ventricle to adequately adapt to increased pressure loading is key for patients' prognosis. RV ejection fraction (RVEF) by cardiac magnetic resonance (CMR) is related to outcome in pPH patients, but this global measurement is not ideal for detecting early changes in RV function. Strain analysis on CMR using feature tracking (FT) software provides a more detailed assessment, and might therefore detect early changes in RV function. Aim 1) To compare RV strain parameters in pPH patients and healthy controls, and 2) to compare strain parameters in a subgroup of pPH patients with preserved RVEF (pRVEF) and healthy controls. Methods In this prospective study, a CMR was performed in pPH patients and healthy controls. Using FT-software on standard cine images, the following RV strain parameters were analyzed: global, septal, and free wall longitudinal strain (GLS, sept-LS, free wall-LS), time to peak strain (TTP, as a % of the whole cardiac cycle), the fractional area change (FAC), global circumferential strain (GCS), global longitudinal and global circumferential strain rate (GLSR and GCSR, respectively). A pRVEF is defined as a RVEF >50%. To compare RV strain parameters in pPH patients to healthy controls, the Mann-Whitney U test was used. Results 33 pPH-patients (55 [45–63] yrs; 10 (30%) male) and 22 healthy controls (40 [36–48] yrs; 15 (68%) male) were included. All RV strain parameters were significantly reduced in pPH patients compared to healthy controls (see table), except for GCS and GCSR. Most importantly, in pPH patients with pRVEF (n=8) GLS (−26.6% [−22.6 to −27.3] vs. −28.1% [−26.2 to −30.6], p=0.04), sept-LS (−21.2% [−19.8 to −23.2] vs. −26.0% [−24.0 to −27.9], p=0.005), and FAC (39% [35–44] vs. 44% [42–47], p=0.02) were still significantly impaired compared to healthy controls. The RV TTP was significantly increased in pPH patients compared to healthy controls (47% [44–57] vs. 40% [33–43], p≤0.001). Conclusions Several CMR-FT strain parameters of the right ventricle are impaired in pPH patients when compared to healthy controls. Moreover, even in pPH patients with a preserved RVEF multiple RV strain parameters (GLS, sept-LS, and FAC) remained significantly impaired, and TTP significantly prolonged, in comparison to healthy controls. This suggests that RV strain parameters may be used as an early marker of RV dysfunction in pPH patients. Funding Acknowledgement Type of funding source: None


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
KIRILL Malikov ◽  
MARINA Kirichkova ◽  
MARIA Simakova ◽  
NARECK Marukyan ◽  
OLGA Moiseeva

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Chronic thromboembolic pulmonary hypertension (CTEPH) leads to a progressive increase in pulmonary vascular resistance (PVR) and pulmonary artery pressure (PAP) with the development of severe dysfunction of the right heart and heart failure. Mortality for three years with an average pressure in the pulmonary artery (PA) of more than 50 mmHg is more than 90%. Balloon pulmonary angioplasty (BPA) has a significant advantage over other methods of surgical treatment, but it requires the determination of additional non-invasive markers of effectiveness. Transthoracic echocardiography (TTE) remains the main method for assessing the morphology and function of the heart. Purpose Compare different indicators reflecting the severity of CTEPH with TTE indicators before and after BPA. To evaluate the effectiveness of using BPA for the treatment of patients with CTEPH using routine TTE and speckle tracking mode. Materials and methods For 18 months 30 patients without concomitant cardiovascular pathology were subjected to several BPA sessions. Before treatment, 50% of patients belonged to the 3 CTEPH functional class (FC), 40% to 2 FC, 10% to 1 FC. The average number of sessions was 4.7 ± 1.3. Before the first BPA and after the last, all the patients were performed: six-minute walk test (6MWT, metres), Borg scale (in points), test for NT-proBNP (pg/ml); TTE with assessment of the right ventricle (RV) and left ventricle (LV) including areas of the right atrium (aRA, cm2), mean pulmonary artery pressure (PUPM,mmHg),RV free wall strain (GLSFW, %), RV free wall strain rate (GLSRFW, sm/sec), RV free wall postsystolic shortening (PSSFW, %), tricuspid annular plane systolic excursion (TAPSE, sm), tricuspid annulus systolic velocity (TASV, sm/sec). Results. Before the first BPA session, the 6MWT in the patient group averaged 315.9 ± 9.08 metres, after - 439.5 ± 11.45 m; the Borg from 5.4 ± 0.94 points decreased to 4 ± 1.01 points; NT-proBNP before the treatment was 1513 ± 13.01 pg/ml, after - 171 ± 6.09; according to TTE the ratio of RV/ LV before and after treatment was 1.31 ± 0.02 and 0.97 ± 0.04; aRA was 29.3 ± 4.87 and 22.3 ± 3.53 cm2; basal RV - 52 ± 5.11 and 44 ± 7.26 mm; PUPM decreased from 76.6 ± 7.65 to 31.3 ± 3.78 mmHg; GLSFW from -14.69 ± 2.33 came to 17.5 ± 3.45 %; GLSRFW with -0.9 ± 0.09 to -1.7 ± 0.11 cm/sec; TAPSE from 16.7 ± 1.87 to 18.2 ± 2.34 cm; TASV from 10.11 ± 1.45 to 12.25 ± 1.98 cm/s, PSSFW before treatment was -18.4 ± 1.2%, after treatment in 66% of patients disappeared, in 34% became an average of 17.4 ± 0.9% The distribution of STEPH FC has also changed. Conclusion. BPA leads to an improvement in the tolerance of physical activity, clinical indicators, and parameters of central hemodynamics in the pulmonary circulation, evaluated according to direct manometry, and leads to reverse remodeling of the RV in the long term. Performing a staged BPA leads to an improvement in the functional parameters of contractility of the RV.


1987 ◽  
Vol 253 (6) ◽  
pp. H1381-H1390 ◽  
Author(s):  
W. L. Maughan ◽  
K. Sunagawa ◽  
K. Sagawa

To analyze the interaction between the right and left ventricle, we developed a model that consists of three functional elastic compartments (left ventricular free wall, septal, and right ventricular free wall compartments). Using 10 isolated blood-perfused canine hearts, we determined the end-systolic volume elastance of each of these three compartments. The functional septum was by far stiffer for either direction [47.2 +/- 7.2 (SE) mmHg/ml when pushed from left ventricle and 44.6 +/- 6.8 when pushed from right ventricle] than ventricular free walls [6.8 +/- 0.9 mmHg/ml for left ventricle and 2.9 +/- 0.2 for right ventricle]. The model prediction that right-to-left ventricular interaction (GRL) would be about twice as large as left-to-right interaction (GLR) was tested by direct measurement of changes in isovolumic peak pressure in one ventricle while the systolic pressure of the contralateral ventricle was varied. GRL thus measured was about twice GLR (0.146 +/- 0.003 vs. 0.08 +/- 0.001). In a separate protocol the end-systolic pressure-volume relationship (ESPVR) of each ventricle was measured while the contralateral ventricle was alternatively empty and while systolic pressure was maintained at a fixed value. The cross-talk gain was derived by dividing the amount of upward shift of the ESPVR by the systolic pressure difference in the other ventricle. Again GRL measured about twice GLR (0.126 +/- 0.002 vs. 0.065 +/- 0.008). There was no statistical difference between the gains determined by each of the three methods (predicted from the compartment elastances, measured directly, or calculated from shifts in the ESPVR). We conclude that systolic cross-talk gain was twice as large from right to left as from left to right and that the three-compartment volume elastance model is a powerful concept in interpreting ventricular cross talk.


1991 ◽  
Vol 101 (2) ◽  
pp. 222-229 ◽  
Author(s):  
William G. Williams ◽  
Patricia Burrows ◽  
Robert M. Freedom ◽  
George A. Trusler ◽  
John G. Coles ◽  
...  

2013 ◽  
Vol 95 (5) ◽  
pp. 1670-1674 ◽  
Author(s):  
Qian-zhen Li ◽  
Hua Cao ◽  
Qiang Chen ◽  
Gui-Can Zhang ◽  
Liang-Wan Chen ◽  
...  

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
LIU SHANGYU ◽  
Yao Yan

Background: Giant-cell myocarditis (GCM) is a rare disease with a poor prognosis. The typical pathological features of GCM include an infiltration of multinucleated giant cells accompanied by numerous inflammatory immune cells. However, the etiology and pathophysiology of GCM remain largely unclear. Methods: Eight patients with pathological diagnoses with GCM underwent heart transplantation at our center. Hematoxylin- eosin (H-E) and Masson’s tri-chrome staining were performed on biopsies of the free walls of the right and left ventricles and interventricular septa of the original hearts to determine the characteristic distribution of cardiac lesions and the composition of infiltrating immune cells. A multiplex immunohistochemistry and multispectral imaging analysis were applied to further classify the specific types of inflammatory immune cells. Results: Inflammation found in a descending frequency gradually from the epicardium to the endocardium in the free wall of the left ventricle, but concentrated on the surface of right ventricular septum. Typical inflammatory infiltration and pathological changes were observed in the right-sided ventricular septum samples from all 8 patients. Numerous inflammatory immune cells, particularly CD4 + T cells, were detected in the lesion, which surrounded the emerging multinucleated giant cells. CD8 + T cells and a small number of regulatory T cells were scattered in the periphery. Conclusions: In GCM, cardiac lesions appear to concentrate particularly beneath the epicardium of the left ventricular free wall and the right side of the ventricular septum. These findings provide a rationale for the diagnostic use of conventional endocardial biopsy. The findings further suggest that myocardial injury is mediated by a variety of lymphocytes, especially CD4 + T cells.


Sign in / Sign up

Export Citation Format

Share Document