scholarly journals Synchrotron Emission from Particles Having A Truncated Power-law Energy Spectrum

1974 ◽  
Vol 168 (2) ◽  
pp. 379-397 ◽  
Author(s):  
L. J. Gleeson ◽  
M. P. C. Legg ◽  
K. C. Westfold
2021 ◽  
Author(s):  
Yulong Hu ◽  
Baifei Shen ◽  
Jiancai Xu ◽  
Yasuhiro Kuramitsu ◽  
Hideaki Takabe ◽  
...  

Abstract Here, we have studied the nonthermal acceleration of energetic electrons/protons under the near-QED regime by extending the laser intensity beyond 1023 W/cm2 based on a two-dimensional particle-in-cell simulation. The radiation-reaction (RR) effect plays a critical role and brings a quantum stochastic effect to the charged-particle acceleration process. Background electrons in plasma are accelerated in an intense laser field to several GeVs with strong oscillations and thus radiate γ-ray photons. The emitting γ-photons have a broad energy spectrum with maximal energy up to 3 GeV and result in radiation-reaction trapping of the electrons, forming a relativistic plasma bunch in the plasma channel. The accumulation of electrons and protons produces a charge-separation field for the acceleration/deceleration of charged particles. The accelerated electrons have a nonthermal spectrum with a power-law index of 1.5 with a laser intensity 1023 W/cm2 lower than that in the non-QED regime. As the laser intensity further increases over 1024 W/cm2, the power-law index further drops to 1.2. Moreover, the energy spectrum of accelerated protons has a nonthermal distribution with a power-law index of 0.7, which is much lower than that of electrons in the near-QED regime.


1991 ◽  
Author(s):  
K. Mima ◽  
W. Horton ◽  
T. Tajima ◽  
A. Hasegawa
Keyword(s):  

2017 ◽  
Vol 12 (S333) ◽  
pp. 157-161
Author(s):  
Samir Choudhuri ◽  
Somnath Bharadwaj ◽  
Sk. Saiyad Ali ◽  
Nirupam Roy ◽  
H. T. Intema ◽  
...  

AbstractCharacterizing the diffuse Galactic synchrotron emission (DGSE) at arcminute angular scales is needed to remove this foregrounds in cosmological 21-cm measurements. Here, we present the angular power spectrum (Cℓ) measurement of the diffuse Galactic synchrotron emission using two fields observed by the TIFR GMRT Sky Survey (TGSS). We apply 2D Tapered Gridded Estimator (TGE) to estimate the Cℓ from the visibilities. We find that the residual data after subtracting the point sources is likely dominated by the diffuse Galactic synchrotron radiation across the angular multipole range 240 ≤ ℓ ≲ 500. We fit a power law to the measured Cℓ over this ℓ range. We find that the slopes in both fields are consistent with earlier measurements. For the second field, however, we interpret the measured Cℓ as an upper limit for the DGSE as there is an indication of a significant residual point source contribution.


2007 ◽  
Vol 16 (02n03) ◽  
pp. 521-526
Author(s):  
A. L. DOS SANTOS ◽  
L. P. L. DE OLIVEIRA ◽  
B. E. J. BODMANN ◽  
M. T. VILHENA

The present article is an attempt to provide a parametrization for particle acceleration probabilities in the very high energy range combining a discrete fractal scheme for interaction probabilities and the observational fact of a power law energy spectrum for cosmic ray particles.


JETP Letters ◽  
2013 ◽  
Vol 98 (4) ◽  
pp. 237-241 ◽  
Author(s):  
D. Pelinovsky ◽  
E. Pelinovsky ◽  
E. Kartashova ◽  
T. Talipova ◽  
A. Giniyatullin

2019 ◽  
Vol 488 (2) ◽  
pp. 2904-2916 ◽  
Author(s):  
Peter H Sims ◽  
Jonathan C Pober

ABSTRACT The power spectrum of redshifted 21 cm emission brightness temperature fluctuations is a powerful probe of the Epoch of Reionization (EoR). However, bright foreground emission presents a significant impediment to its unbiased recovery from interferometric data. We estimate the power spectrum within a Bayesian framework and demonstrate that incorporating a priori knowledge of the spectral structure of foregrounds in the large spectral scale component of the data model enables significantly improved modelling of the foregrounds without increasing the model complexity. We explore two astrophysically motivated parametrizations of the large spectral scale model: (i) a constant plus power-law model of the form $q_{0}+q_{1}(\nu /\nu _{0})^{b_{1}}$ for two values of b1: b1 = 〈β〉GDSE and b1 = 〈β〉EGS, the mean spectral indices of the Galactic diffuse synchrotron emission and extragalactic source foreground emission, respectively; and (ii) a constant plus double power-law model of the form $q_{0}+q_{1}(\nu /\nu _{0})^{b_{1}}+q_{2}(\nu /\nu _{0})^{b_{2}}$ with b1 = 〈β〉GDSE and b2 = 〈β〉EGS. We estimate the EoR power spectrum from simulated interferometric data consisting of an EoR signal, Galactic diffuse synchrotron emission, extragalactic sources, and diffuse free–free emission from the Galaxy. We show that, by jointly estimating a model of the EoR signal with the constant plus double power-law parametrization of the large spectral scale model, unbiased estimates of the EoR power spectrum are recoverable on all spatial scales accessible in the data set, including on the large spatial scales that were found to be contaminated in earlier work.


Sign in / Sign up

Export Citation Format

Share Document