scholarly journals Rotational evolution of solar-type stars with core-envelope decoupling

1993 ◽  
Vol 261 (4) ◽  
pp. 766-782 ◽  
Author(s):  
L. Jianke ◽  
A. Collier Cameron
2019 ◽  
Vol 626 ◽  
pp. A38 ◽  
Author(s):  
A. F. Lanza ◽  
Y. Netto ◽  
A. S. Bonomo ◽  
H. Parviainen ◽  
A. Valio ◽  
...  

Context. The study of young Sun-like stars is fundamental to understanding the magnetic activity and rotational evolution of the Sun. Space-borne photometry by the Kepler telescope provides unprecedented datasets to investigate these phenomena in Sun-like stars. Aims. We present a new analysis of the entire Kepler photometric time series of the moderately young Sun-like star Kepler-17 accompanied by a transiting hot Jupiter. Methods. We applied a maximum-entropy spot model to the long-cadence out-of-transit photometry of the target to derive maps of the starspot filling factor versus the longitude and the time. These maps are compared to the spots occulted during transits to validate our reconstruction and derive information on the latitudes of the starspots. Results. We find two main active longitudes on the photosphere of Kepler-17, one of which has a lifetime of at least ∼1400 days although with a varying level of activity. The latitudinal differential rotation is of solar type, that is, with the equator rotating faster than the poles. We estimate a minimum relative amplitude ΔΩ/Ω between ∼0.08 ± 0.05 and 0.14 ± 0.05, our determination being affected by the finite lifetime of individual starspots and depending on the adopted spot model parameters. We find marginal evidence of a short-term intermittent activity cycle of ∼48 days and an indication of a longer cycle of 400−600 days characterized by an equatorward migration of the mean latitude of the spots as in the Sun. The rotation of Kepler-17 is likely to be significantly affected by the tides raised by its massive close-by planet. Conclusion. We confirm the reliability of maximum-entropy spot models to map starspots in young active stars and characterize the activity and differential rotation of this young Sun-like planetary host.


2019 ◽  
Vol 632 ◽  
pp. A6 ◽  
Author(s):  
F. Gallet ◽  
C. Zanni ◽  
L. Amard

Context. The early pre-main sequence phase during which solar-mass stars are still likely surrounded by an accretion disk represents a puzzling stage of their rotational evolution. While solar-mass stars are accreting and contracting, they do not seem to spin up substantially. Aims. It is usually assumed that the magnetospheric star-disk interaction tends to maintain the stellar rotation period constant (“disk-locking”), but this hypothesis has never been thoroughly verified. Our aim is to investigate the impact of the star-disk interaction mechanism on the stellar spin evolution during the accreting pre-main sequence phases. Methods. We devised a model for the torques acting on the stellar envelope based on studies of stellar winds, and we developed a new prescription for the star-disk coupling founded on numerical simulations of star-disk interaction and magnetospheric ejections. We then used this torque model to follow the long-term evolution of the stellar rotation. Results. Strong dipolar magnetic field components up to a few kG are required to extract enough angular momentum so as to keep the surface rotation rate of solar-type stars approximately constant for a few Myr. Furthermore an efficient enough spin-down torque can be provided by either one of the following: a stellar wind with a mass outflow rate corresponding to ≈10% of the accretion rate, or a lighter stellar wind combined with a disk that is truncated around the corotation radius entering a propeller regime. Conclusions. Magnetospheric ejections and accretion powered stellar winds play an important role in the spin evolution of solar-type stars. However, kG dipolar magnetic fields are neither uncommon or ubiquitous. Besides, it is unclear how massive stellar winds can be powered while numerical models of the propeller regime display a strong variability that has no observational confirmation. Better observational statistics and more realistic models could contribute to help lessen our calculations’ requirements.


2007 ◽  
Vol 3 (S243) ◽  
pp. 241-248
Author(s):  
Jochen Eislöffel ◽  
Alexander Scholz

AbstractThe evolution of angular momentum is a key to our understanding of star formation and stellar evolution. The rotational evolution of solar-mass stars is mostly controlled by magnetic interaction with the circumstellar disc and angular momentum loss through stellar winds. Major differences in the internal structure of very low-mass stars and brown dwarfs – they are believed to be fully convective throughout their lives, and thus should not operate a solar-type dynamo – may lead to major differences in the rotation and activity of these objects. Here, we report on observational studies to understand the rotational evolution of the very low-mass stars and brown dwarfs.


2013 ◽  
Vol 777 (1) ◽  
pp. 20 ◽  
Author(s):  
J. R. P. Silva ◽  
M. M. F. Nepomuceno ◽  
B. B. Soares ◽  
D. B. de Freitas

1997 ◽  
Vol 161 ◽  
pp. 707-709 ◽  
Author(s):  
Jun Jugaku ◽  
Shiro Nishimura

AbstractWe continued our search for partial (incomplete) Dyson spheres associated with 50 solar-type stars (spectral classes F, G, and K) within 25 pc of the Sun. No candidate objects were found.


1997 ◽  
Vol 161 ◽  
pp. 267-282 ◽  
Author(s):  
Thierry Montmerle

AbstractFor life to develop, planets are a necessary condition. Likewise, for planets to form, stars must be surrounded by circumstellar disks, at least some time during their pre-main sequence evolution. Much progress has been made recently in the study of young solar-like stars. In the optical domain, these stars are known as «T Tauri stars». A significant number show IR excess, and other phenomena indirectly suggesting the presence of circumstellar disks. The current wisdom is that there is an evolutionary sequence from protostars to T Tauri stars. This sequence is characterized by the initial presence of disks, with lifetimes ~ 1-10 Myr after the intial collapse of a dense envelope having given birth to a star. While they are present, about 30% of the disks have masses larger than the minimum solar nebula. Their disappearance may correspond to the growth of dust grains, followed by planetesimal and planet formation, but this is not yet demonstrated.


2019 ◽  
Vol 15 (S354) ◽  
pp. 384-391
Author(s):  
L. Doyle ◽  
G. Ramsay ◽  
J. G. Doyle ◽  
P. F. Wyper ◽  
E. Scullion ◽  
...  

AbstractWe report on our project to study the activity in both the Sun and low mass stars. Utilising high cadence, Hα observations of a filament eruption made using the CRISP spectropolarimeter mounted on the Swedish Solar Telescope has allowed us to determine 3D velocity maps of the event. To gain insight into the physical mechanism which drives the event we have qualitatively compared our observation to a 3D MHD reconnection model. Solar-type and low mass stars can be highly active producing flares with energies exceeding erg. Using K2 and TESS data we find no correlation between the number of flares and the rotation phase which is surprising. Our solar flare model can be used to aid our understanding of the origin of flares in other stars. By scaling up our solar model to replicate observed stellar flare energies, we investigate the conditions needed for such high energy flares.


2010 ◽  
Vol 6 (S276) ◽  
pp. 527-529
Author(s):  
Xavier Dumusque ◽  
Nuno C. Santos ◽  
Stéphane Udry ◽  
Cristophe Lovis ◽  
Xavier Bonfils

AbstractSpectrographs like HARPS can now reach a sub-ms−1 precision in radial-velocity (RV) (Pepe & Lovis 2008). At this level of accuracy, we start to be confronted with stellar noise produced by 3 different physical phenomena: oscillations, granulation phenomena (granulation, meso- and super-granulation) and activity. On solar type stars, these 3 types of perturbation can induce ms−1 RV variation, but on different time scales: 3 to 15 minutes for oscillations, 15 minutes to 1.5 days for granulation phenomena and 10 to 50 days for activity. The high precision observational strategy used on HARPS, 1 measure per night of 15 minutes, on 10 consecutive days each month, is optimized, due to a long exposure time, to average out the noise coming from oscillations (Dumusque et al. 2011a) but not to reduce the noise coming from granulation and activity (Dumusque et al. 2011a and Dumusque et al. 2011b). The smallest planets found with this strategy (Mayor et al. 2009) seems to be at the limit of the actual observational strategy and not at the limit of the instrumental precision. To be able to find Earth mass planets in the habitable zone of solar-type stars (200 days for a K0 dwarf), new observational strategies, averaging out simultaneously all type of stellar noise, are required.


Sign in / Sign up

Export Citation Format

Share Document