scholarly journals Exploring Flaring Behaviour on Low Mass Stars, Solar-type Stars and the Sun

2019 ◽  
Vol 15 (S354) ◽  
pp. 384-391
Author(s):  
L. Doyle ◽  
G. Ramsay ◽  
J. G. Doyle ◽  
P. F. Wyper ◽  
E. Scullion ◽  
...  

AbstractWe report on our project to study the activity in both the Sun and low mass stars. Utilising high cadence, Hα observations of a filament eruption made using the CRISP spectropolarimeter mounted on the Swedish Solar Telescope has allowed us to determine 3D velocity maps of the event. To gain insight into the physical mechanism which drives the event we have qualitatively compared our observation to a 3D MHD reconnection model. Solar-type and low mass stars can be highly active producing flares with energies exceeding erg. Using K2 and TESS data we find no correlation between the number of flares and the rotation phase which is surprising. Our solar flare model can be used to aid our understanding of the origin of flares in other stars. By scaling up our solar model to replicate observed stellar flare energies, we investigate the conditions needed for such high energy flares.

2000 ◽  
Vol 198 ◽  
pp. 540-546 ◽  
Author(s):  
Cristina Chiappini ◽  
Francesca Matteucci

In this work we present the predictions of a modified version of the ‘two-infall model’ (Chiappini et al. 1997 - CMG) for the evolution of 3He, 4He and D in the solar vicinity, as well as their distributions along the Galactic disk. In particular, we show that when allowing for extra-mixing process in low mass stars (M < 2.5 M⊙), as predicted by Charbonnel and do Nascimento (1998), a long standing problem in chemical evolution is solved, namely: the overproduction of 3He by the chemical evolution models as compared to the observed values in the sun and in the interstellar medium. Moreover, we show that chemical evolution models can constrain the primordial value of the deuterium abundance and that a value of (D/H)p < 3 × 10—5 is suggested by the present model. Finally, adopting the primordial 4He abundance suggested by Viegas et al. (1999), we obtain a value for ΔY/ΔZ ≃ 2 and a better agreement with the solar 4He abundance.


In most discussions of the formation of the Solar System, the early Sun is assumed to have possessed the bulk of the angular momentum of the system, and a closely surrounding disc of gas was spun out, which, through magnetic coupling, acquired a progressively larger proportion of the total angular momentum. There are difficulties with this model in accounting for the inclined axis of the Sun, the magnitude of the magnetic coupling required, and the nucleogenetic variations recently observed in the Solar System. Another possibility exists, namely that of a slowly contracting disc of interstellar material, leading to the formation of both a central star and a protoplanetary disc. In this model one can better account for the tilt of the Sun’s axis and the lack of mixing necessary to account for the nucleogenetic evidence. The low angular momentum of the Sun and of other low mass stars is then seen as resulting from a slow build-up as a degenerate dwarf, acquiring orbital material at a low specific angular momentum. When the internal temperature reaches the threshold for hydrogen burning, the star expands to the Main Sequence and is now a slow rotator. More massive stars would spin quickly because they had to acquire orbiting material after the expansion, and therefore at a high specific angular momentum. A process of gradual inward spiralling may also allow materials derived from different sources to accumulate into solid bodies, and be placed on a great variety of orbits in the outer reaches of the system, setting up the cometary cloud of uneven nucleogenetic composition.


2007 ◽  
Vol 3 (S243) ◽  
pp. 241-248
Author(s):  
Jochen Eislöffel ◽  
Alexander Scholz

AbstractThe evolution of angular momentum is a key to our understanding of star formation and stellar evolution. The rotational evolution of solar-mass stars is mostly controlled by magnetic interaction with the circumstellar disc and angular momentum loss through stellar winds. Major differences in the internal structure of very low-mass stars and brown dwarfs – they are believed to be fully convective throughout their lives, and thus should not operate a solar-type dynamo – may lead to major differences in the rotation and activity of these objects. Here, we report on observational studies to understand the rotational evolution of the very low-mass stars and brown dwarfs.


1999 ◽  
Vol 118 (3) ◽  
pp. 1301-1314 ◽  
Author(s):  
David R. Soderblom ◽  
Jeremy R. King ◽  
Lionel Siess ◽  
Burton F. Jones ◽  
Debra Fischer

2000 ◽  
Vol 24 (1) ◽  
pp. 186-189
Author(s):  
H. Zinnecker ◽  
C. Scarfe ◽  
C. Allen ◽  
T. Armstrong ◽  
W. Hartkopf ◽  
...  

This triennial report (1996-1999) reviews the subject from a somewhat personal angle, mostly related to binary star formation and young binary star populations – a subject whose time had come in the early 1990s and is now in full swing.Many astronomers have searched for binary systems among main-sequence stars, and two large-scale surveys published in 1991 and 1992 have already become classics. Well before they became famous for finding extrasolar planets (see below), observing teams led by Michel Mayor (Geneva Observatory) and Geoffrey Marcy (San Francisco State Univ., now Univ. of Calif, at Berkeley) spent many years searching for low-mass stellar companions of nearby stars. The late Antoine Duquennoy and Mayor surveyed all solar-type dwarfs (spectral types F7 through G9) within 20 pc of the Sun, while Debra Fischer and Marcy studied stars with somewhat lower mass (M dwarfs) slightly nearer to the Sun.


2019 ◽  
Vol 627 ◽  
pp. A144 ◽  
Author(s):  
R. Spinelli ◽  
F. Borsa ◽  
G. Ghirlanda ◽  
G. Ghisellini ◽  
S. Campana ◽  
...  

Context. In the last few years many exoplanets in the habitable zone (HZ) of M-dwarfs have been discovered, but the X-ray/UV activity of cool stars is very different from that of our Sun. The high-energy radiation environment influences the habitability, plays a crucial role for abiogenesis, and impacts the chemistry and evolution of planetary atmospheres. LHS 1140b is one of the most interesting exoplanets discovered. It is a super-Earth-size planet orbiting in the HZ of LHS 1140, an M4.5 dwarf at ~15 parsecs. Aims. In this work, we present the results of the analysis of a Swift X-ray/UV observing campaign. We characterize for the first time the X-ray/UV radiation environment of LHS 1140b. Methods. We measure the variability of the near ultraviolet (NUV) flux and estimate the far ultraviolet (FUV) flux with a correlation between FUV1344−1786Å and NUV1771−2831Å flux obtained using the sample of low-mass stars in the GALEX archive. We highlight the presence of a dominating X-ray source close to the J2000 coordinates of LHS 1140, characterize its spectrum, and derive an X-ray flux upper limit for LHS 1140. We find that this contaminant source could have influenced the previously estimated spectral energy distribution. Results. No significant variation of the NUV1771−2831Å flux of LHS 1140 is found over 3 months, and we do not observe any flare during the 38 ks on the target. LHS 1140 is in the 25th percentile of least variable M4-M5 dwarfs of the GALEX sample. Analyzing the UV flux experienced by the HZ planet LHS 1140b, we find that outside the atmosphere it receives a NUV1771−2831Å flux <2% with respect to that of the present-day Earth, while the FUV1344−1786Å/NUV1771−2831Å ratio is ~100–200 times higher. This represents a lower limit to the true FUV/NUV ratio since the FUV1344−1786Å band does not include Lyman-alpha, which dominates the FUV output of low-mass stars. This is a warning for future searches for biomarkers, which must take into account this high ratio. Conclusions. The relatively low level and stability of UV flux experienced by LHS 1140b should be favorable for its present-day habitability.


2020 ◽  
Vol 493 (2) ◽  
pp. 2329-2338
Author(s):  
B Hoyman ◽  
Ö Çakırlı

ABSTRACT Solar-type stars in eclipsing binaries are proving to be a remarkable resource of knowledge for testing models of stellar evolution, as spectroscopic and photometric studies have opened up a window into their interiors. Until recently, many cases have been worked out with Kepler data. In an ongoing effort to elucidate this research, we examine five detached eclipsing binaries, selected from the Kepler catalogue. There is a well-known stellar parameter discrepancy for low-mass stars, in that the observed radii and masses are often larger and stars overluminous than predicted by theory by several per cent. In our samples, we found five double-lined binaries, with solar-type stars dominating the spectrum. The orbital and light-curve solutions were found for them, and compared with isochrones, in order to estimate absolute physical parameters and evolutionary status of the components. An important aspect of this work is that the calculated stellar radii and masses are consistent with theoretical models within the uncertainties, whereas the estimated temperatures from the disentangled spectra of the components are no different than predicted.


2011 ◽  
Vol 531 ◽  
pp. A7 ◽  
Author(s):  
A. Garcés ◽  
S. Catalán ◽  
I. Ribas

2008 ◽  
Vol 4 (S258) ◽  
pp. 395-408 ◽  
Author(s):  
Edward F. Guinan ◽  
Scott G. Engle

AbstractMulti-wavelength studies of solar analogs (G0–5 V stars) with ages from ~50 Myr to 9 Gyr have been carried out as part of the “Sun in Time” program for nearly 20 yrs. From these studies it is inferred that the young (ZAMS) Sun was rotating more than 10× faster than today. As a consequence, young solar-type stars and the early Sun have vigorous magnetohydrodynamic (MHD) dynamos and correspondingly strong coronal X-ray and transition region/chromospheric FUV–UV emissions (up to several hundred times stronger than the present Sun). Also, rotational modulated, low amplitude light variations of young solar analogs indicate the presence of large starspot regions covering ~5–30% of their surfaces. To ensure continuity and homogeneity for this program, we use a restricted sample of G0–5 V stars with masses, radii, Teff, and internal structure (i.e. outer convective zones) closely matching those of the Sun. From these analogs we have determined reliable rotation-age-activity relations and X-ray–UV (XUV) spectral irradiances for the Sun (or any solar-type star) over time. These XUV irradiance measures serve as input data for investigating the photo-ionization and photo-chemical effects of the young, active Sun on the paleo-planetary atmospheres and environments of solar system planets. These measures are also important to study the effects of these high energy emissions on the numerous exoplanets hosted by solar-type stars of different ages. Recently we have extended the study to include lower mass, main-sequence (dwarf) dK and dM stars to determine relationships among their rotation spin-down rates and coronal and chromospheric emissions as a function of mass and age. From rotation-age-activity relations we can determine reliable ages for main-sequence G, K, M field stars and, subsequently, their hosted planets. Also inferred are the present and the past XUV irradiance and plasma flux exposures that these planets have endured and the suitability of the hosted planets to develop and sustain life.


Sign in / Sign up

Export Citation Format

Share Document