scholarly journals Simulating star clusters across cosmic time – II. Escape fraction of ionizing photons from molecular clouds

2020 ◽  
Vol 492 (4) ◽  
pp. 4858-4873 ◽  
Author(s):  
Chong-Chong He ◽  
Massimo Ricotti ◽  
Sam Geen

ABSTRACT We calculate the hydrogen- and helium-ionizing radiation escaping star-forming molecular clouds, as a function of the star cluster mass and compactness, using a set of high-resolution radiation-magnetohydrodynamic simulations of star formation in self-gravitating, turbulent molecular clouds. In these simulations, presented in He et al., the formation of individual massive stars is well resolved, and their UV radiation feedback and lifetime on the main sequence are modelled self-consistently. We find that the escape fraction of ionizing radiation from molecular clouds, $\langle f_{\rm esc}^{\scriptscriptstyle \rm MC}\rangle$ , decreases with increasing mass of the star cluster and with decreasing compactness. Molecular clouds with densities typically found in the local Universe have negligible $\langle f_{\rm esc}^{\scriptscriptstyle \rm MC}\rangle$ , ranging between $0.5{{\ \rm per\ cent}}$ and $5{{\ \rm per\ cent}}$. 10 times denser molecular clouds have $\langle f_{\rm esc}^{\scriptscriptstyle \rm MC}\rangle$ $\approx 10{{\ \rm per\ cent}}{-}20{{\ \rm per\ cent}}$, while 100× denser clouds, which produce globular cluster progenitors, have $\langle f_{\rm esc}^{\scriptscriptstyle \rm MC}\rangle$ $\approx 20{{\ \rm per\ cent}}{-}60{{\ \rm per\ cent}}$. We find that $\langle f_{\rm esc}^{\scriptscriptstyle \rm MC}\rangle$ increases with decreasing gas metallicity, even when ignoring dust extinction, due to stronger radiation feedback. However, the total number of escaping ionizing photons decreases with decreasing metallicity because the star formation efficiency is reduced. We conclude that the sources of reionization at z > 6 must have been very compact star clusters forming in molecular clouds about 100× denser than in today’s Universe, which lead to a significant production of old globular clusters progenitors.

2019 ◽  
Vol 490 (1) ◽  
pp. L67-L70 ◽  
Author(s):  
Alison Sills ◽  
Emanuele Dalessandro ◽  
Mario Cadelano ◽  
Mayte Alfaro-Cuello ◽  
J M Diederik Kruijssen

ABSTRACT The cluster M54 lies at the centre of the Sagittarius dwarf spheroidal galaxy, and therefore may be the closest example of a nuclear star cluster. Either in situ star formation, inspiralling globular clusters, or a combination have been invoked to explain the wide variety of stellar sub-populations in nuclear star clusters. Globular clusters are known to exhibit light element variations, which can be identified using the photometric construct called a chromosome map. In this letter, we create chromosome maps for three distinct age-metallicity sub-populations in the vicinity of M54. We find that the old, metal-poor population shows the signature of light element variations, while the young and intermediate-age metal rich populations do not. We conclude that the nucleus of Sagittarius formed through a combination of in situ star formation and globular cluster accretion. This letter demonstrates that properly constructed chromosome maps of iron-complex globular clusters can provide insight into the formation locations of the different stellar populations.


2020 ◽  
Vol 497 (3) ◽  
pp. 3830-3845 ◽  
Author(s):  
Hajime Fukushima ◽  
Hidenobu Yajima ◽  
Kazuyuki Sugimura ◽  
Takashi Hosokawa ◽  
Kazuyuki Omukai ◽  
...  

ABSTRACT We study star cluster formation in various environments with different metallicities and column densities by performing a suite of 3D radiation hydrodynamics simulations. We find that the photoionization feedback from massive stars controls the star formation efficiency (SFE) in a star-forming cloud, and its impact sensitively depends on the gas metallicity Z and initial cloud surface density Σ. At Z = 1 Z⊙, SFE increases as a power law from 0.03 at Σ = 10 M⊙ pc−2 to 0.3 at $\Sigma = 300\,\mathrm{M}_{\odot }\, {\rm pc^{-2}}$. In low-metallicity cases $10^{-2}\!-\!10^{-1}\, \mathrm{Z}_{\odot }$, star clusters form from atomic warm gases because the molecule formation time is not short enough with respect to the cooling or dynamical time. In addition, the whole cloud is disrupted more easily by expanding H ii bubbles that have higher temperature owing to less efficient cooling. With smaller dust attenuation, the ionizing radiation feedback from nearby massive stars is stronger and terminate star formation in dense clumps. These effects result in inefficient star formation in low-metallicity environments: the SFE drops by a factor of ∼3 at Z = 10−2 Z⊙ compared to the results for Z = 1 Z⊙, regardless of Σ. Newborn star clusters are also gravitationally less bound. We further develop a new semi-analytical model that can reproduce the simulation results well, particularly the observed dependencies of the SFEs on the cloud surface densities and metallicities.


2015 ◽  
Vol 12 (S316) ◽  
pp. 70-76
Author(s):  
Zara Randriamanakoto ◽  
Petri Väisänen

AbstractSuper star clusters (SSCs) represent the youngest and most massive form of known gravitationally bound star clusters in the Universe. They are born abundantly in environments that trigger strong and violent star formation. We investigate the properties of these massive SSCs in a sample of 42 nearby starbursts and luminous infrared galaxies. The targets form the sample of the SUperNovae and starBursts in the InfraReD (SUNBIRD) survey that were imaged using near-infrared (NIR) K-band adaptive optics mounted on the Gemini/NIRI and the VLT/NaCo instruments. Results from i) the fitted power-laws to the SSC K-band luminosity functions, ii) the NIR brightest star cluster magnitude − star formation rate (SFR) relation and iii) the star cluster age and mass distributions have shown the importance of studying SSC host galaxies with high SFR levels to determine the role of the galactic environments in the star cluster formation, evolution and disruption mechanisms.


2019 ◽  
Vol 57 (1) ◽  
pp. 227-303 ◽  
Author(s):  
Mark R. Krumholz ◽  
Christopher F. McKee ◽  
Joss Bland-Hawthorn

Star clusters stand at the intersection of much of modern astrophysics: the ISM, gravitational dynamics, stellar evolution, and cosmology. Here, we review observations and theoretical models for the formation, evolution, and eventual disruption of star clusters. Current literature suggests a picture of this life cycle including the following several phases: ▪ Clusters form in hierarchically structured, accreting molecular clouds that convert gas into stars at a low rate per dynamical time until feedback disperses the gas. ▪ The densest parts of the hierarchy resist gas removal long enough to reach high star-formation efficiency, becoming dynamically relaxed and well mixed. These remain bound after gas removal. ▪ In the first ∼100 Myr after gas removal, clusters disperse moderately fast, through a combination of mass loss and tidal shocks by dense molecular structures in the star-forming environment. ▪ After ∼100 Myr, clusters lose mass via two-body relaxation and shocks by giant molecular clouds, processes that preferentially affect low-mass clusters and cause a turnover in the cluster mass function to appear on ∼1–10-Gyr timescales. ▪ Even after dispersal, some clusters remain coherent and thus detectable in chemical or action space for multiple galactic orbits. In the next decade, a new generation of space– and adaptive optics–assisted ground-based telescopes will enable us to test and refine this picture.


2005 ◽  
Vol 13 ◽  
pp. 366-368
Author(s):  
Peter Anders ◽  
Uta Fritze – v. Alvensleben ◽  
Richard de Grijs

AbstractStar cluster formation is a major mode of star formation in the extreme conditions of interacting galaxies and violent starbursts. Young clusters are observed to form in a variety of such galaxies, a substantial number resembling the progenitors of globular clusters in mass and size, but with significantly enhanced metallicity. From studies of the metal-poor and metal-rich star cluster populations of galaxies, we can therefore learn about the violent star formation history of these galaxies, and eventually about galaxy formation and evolution. We present a new set of evolutionary synthesis models of our GALEV code, with special emphasis on the gaseous emission of presently forming star clusters, and a new tool to compare extensive model grids with multi-color broad-band observations to determine individual cluster masses, metallicities, ages and extinction values independently. First results for young star clusters in the dwarf starburst galaxy NGC 1569 are presented. The mass distributions determined for the young clusters give valuable input to dynamical star cluster system evolution models, regarding survival and destruction of clusters. We plan to investigate an age sequence of galaxy mergers to see dynamical destruction effects in process.


2015 ◽  
Vol 12 (S316) ◽  
pp. 117-122
Author(s):  
Dimitrios A. Gouliermis ◽  
Sacha Hony

AbstractHow does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre–main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these two parameters with a considerable scatter. The fraction of stellar over the total (gas plus young stars) mass is found to be systematically higher within the central 15 pc (where the young massive cluster is located) than outside, which suggests variations in the star formation efficiency within the same star-forming complex. This trend possibly reflects a change of star formation efficiency in N66 between clustered and non-clustered star formation. Our findings suggest that the formation of NGC 346 is the combined result of star formation regulated by turbulence and of early dynamical evolution induced by the gravitational potential of the dense interstellar medium.


2019 ◽  
Vol 492 (2) ◽  
pp. 1594-1613 ◽  
Author(s):  
Rowan J Smith ◽  
Robin G Treß ◽  
Mattia C Sormani ◽  
Simon C O Glover ◽  
Ralf S Klessen ◽  
...  

ABSTRACT We introduce a new suite of simulations, ‘The Cloud Factory’, which self-consistently forms molecular cloud complexes at high enough resolution to resolve internal substructure (up to 0.25 M⊙ in mass) all while including galactic-scale forces. We use a version of the arepo code modified to include a detailed treatment of the physics of the cold molecular ISM, and an analytical galactic gravitational potential for computational efficiency. The simulations have nested levels of resolution, with the lowest layer tied to tracer particles injected into individual cloud complexes. These tracer refinement regions are embedded in the larger simulation so continue to experience forces from outside the cloud. This allows the simulations to act as a laboratory for testing the effect of galactic environment on star formation. Here we introduce our method and investigate the effect of galactic environment on filamentary clouds. We find that cloud complexes formed after a clustered burst of feedback have shorter lengths and are less likely to fragment compared to quiescent clouds (e.g. the Musca filament) or those dominated by the galactic potential (e.g. Nessie). Spiral arms and differential rotation preferentially align filaments, but strong feedback randomizes them. Long filaments formed within the cloud complexes are necessarily coherent with low internal velocity gradients, which has implications for the formation of filamentary star-clusters. Cloud complexes formed in regions dominated by supernova feedback have fewer star-forming cores, and these are more widely distributed. These differences show galactic-scale forces can have a significant impact on star formation within molecular clouds.


2010 ◽  
Vol 6 (S270) ◽  
pp. 235-238 ◽  
Author(s):  
Elizabeth Harper-Clark ◽  
Norman Murray

AbstractUsing the AMR code ENZO we are simulating the formation of massive star clusters within turbulent Giant Molecular Clouds (GMCs). Here we discuss the simulations from the first stages of building realistic turbulent GMCs, to accurate star formation, and ultimately comprehensive feedback. These simulations aim to build a better understanding of how stars affect GMCs, helping to answer the questions of how long GMCs live and why only a small fraction of the GMC gas becomes stars.


2007 ◽  
Vol 3 (S246) ◽  
pp. 71-72
Author(s):  
J. Pflamm-Altenburg ◽  
P. Kroupa

AbstractThe existence of complex stellar populations in some star clusters challenges the understanding of star formation. E.g. the ONC or the sigma Orionis cluster host much older stars than the main bulk of the young stars. Massive star clusters (ω Cen, G1, M54) show metallicity spreads corresponding to different stellar populations with large age gaps. We show that (i) during star cluster formation field stars can be captured and (ii) very massive globular clusters can accrete gas from a long-term embedding inter stellar medium and restart star formation.


2015 ◽  
Vol 11 (T29A) ◽  
pp. 502-521
Author(s):  
Giovanni Carraro ◽  
Richard de Grijs ◽  
Bruce Elmegreen ◽  
Peter Stetson ◽  
Barbara Anthony-Twarog ◽  
...  

AbstractIt is widely accepted that stars do not form in isolation but result from the fragmentation of molecular clouds, which in turn leads to star cluster formation. Over time, clusters dissolve or are destroyed by interactions with molecular clouds or tidal stripping, and their members become part of the general field population. Star clusters are thus among the basic building blocks of galaxies. In turn, star cluster populations, from young associations and open clusters to old globulars, are powerful tracers of the formation, assembly, and evolutionary history of their parent galaxies. Although their importance (e.g., in mapping out the Milky Way) had been recognised for decades, major progress in this area has only become possible in recent years, both for Galactic and extragalactic cluster populations. Star clusters are the observational foundation for stellar astrophysics and evolution, provide essential tracers of galactic structure, and are unique stellar dynamical environments. Star formation, stellar structure, stellar evolution, and stellar nucleosynthesis continue to benefit and improve tremendously from the study of these systems. Additionally, fundamental quantities such as the initial mass function can be successfully derived from modelling either the Hertzsprung-Russell diagrams or the integrated velocity structures of, respectively, resolved and unresolved clusters and cluster populations. Star cluster studies thus span the fields of Galactic and extragalactic astrophysics, while heavily affecting our detailed understanding of the process of star formation in dense environments. This report highlights science results of the last decade in the major fields covered by IAU Commission 37: Star clusters and associations. Instead of focusing on the business meeting - the out-going president presentation can be found here:http://www.sc.eso.org/gcarraro/splinter2015.pdf- this legacy report contains highlights of the most important scientific achievements in the Commission science area, compiled by 5 well expert members.


Sign in / Sign up

Export Citation Format

Share Document