scholarly journals Young Star Clusters: Progenitors of Globular Clusters!?

2005 ◽  
Vol 13 ◽  
pp. 366-368
Author(s):  
Peter Anders ◽  
Uta Fritze – v. Alvensleben ◽  
Richard de Grijs

AbstractStar cluster formation is a major mode of star formation in the extreme conditions of interacting galaxies and violent starbursts. Young clusters are observed to form in a variety of such galaxies, a substantial number resembling the progenitors of globular clusters in mass and size, but with significantly enhanced metallicity. From studies of the metal-poor and metal-rich star cluster populations of galaxies, we can therefore learn about the violent star formation history of these galaxies, and eventually about galaxy formation and evolution. We present a new set of evolutionary synthesis models of our GALEV code, with special emphasis on the gaseous emission of presently forming star clusters, and a new tool to compare extensive model grids with multi-color broad-band observations to determine individual cluster masses, metallicities, ages and extinction values independently. First results for young star clusters in the dwarf starburst galaxy NGC 1569 are presented. The mass distributions determined for the young clusters give valuable input to dynamical star cluster system evolution models, regarding survival and destruction of clusters. We plan to investigate an age sequence of galaxy mergers to see dynamical destruction effects in process.

2005 ◽  
Vol 13 ◽  
pp. 667-669
Author(s):  
Peter Anders ◽  
Uta Fritze – v. Alvensleben ◽  
Richard de Grijs

AbstractStar cluster formation is a major mode of star formation in the extreme conditions of interacting galaxies and violent star bursts. These newly-formed clusters are built from recycled gas, pre-enriched to various levels within the interacting galaxies. Hence, star clusters of different ages represent a fossil record of the chemical enrichment history of their host galaxy, as well as of the host galaxy’s violent star formation history. We present a new set of evolutionary synthesis models of our GALEV code, specifically developed to include the gaseous emission of presently forming star clusters, and a new tool to analyze multi-color observations with our models. First results for newly-born clusters in the dwarf star-burst galaxy NGC 1569 are presented.


2004 ◽  
Vol 217 ◽  
pp. 210-211
Author(s):  
Peter Anders ◽  
Uta Fritze-V. Alvensleben ◽  
Richard de Grijs

Young clusters are observed to form in a variety of interacting galaxies and violent starbursts, a substantial number resembling the progenitors of the well-studied globular clusters in mass and size. By studying young clusters in merger remnants and peculiar galaxies, we can therefore learn about the violent star formation history of these galaxies. We present a new set of evolutionary synthesis models of our GALEV code specifically developed to include the gaseous emission of presently forming star clusters, and a new tool that allows to determine individual cluster metallicities, ages, extinction values and masses from a comparison of a large grid of model Spectral Energy Distributions (SEDs) with multi-color observations. First results for the newly-born clusters in NGC 1569 are presented.


2015 ◽  
Vol 12 (S316) ◽  
pp. 17-24
Author(s):  
Angela Adamo

AbstractYoung star clusters (YSCs) appear to be a ubiquitous product of star formation in local galaxies, thus, they can be used to study the star formation process at work in their host galaxies. Moreover, YSCs are intrinsically brighter that single stars, potentially becoming the most important tracers of the recent star formation history in galaxies in the local Universe. In local galaxies, we also witness the presence of a large population of evolved star clusters, commonly called globular clusters (GCs). GCs peak formation history is very close to the redshift (z ~ 2) when the cosmic star formation history reached the maximum. Therefore, GCs are usually associated to extreme star formation episodes in high-redshift galaxies. It is yet not clear whether YSCs and GCs share a similar formation process (same physics under different interstellar medium conditions) and evolution process, and whether the former can be used as progenitor analogs of the latter. In this invited contribution, I review general properties of YSC populations in local galaxies. I will summarise some of the current open questions in the field, with particular emphasis to whether or not galactic environments, where YSCs form, leave imprints on the nested populations. The importance of this rapidly developing field can be crucial in understanding GC formation and possibly the galactic environment condition where this ancient population formed.


1996 ◽  
Vol 171 ◽  
pp. 376-376
Author(s):  
Uta Fritze - v. Alvensleben

The high burst strengths and star formation efficiencies found with spectrophotmetric and chemical evolutionary synthesis for mergers of gas-rich spirals led us to expect the formation of a secondary population of globular clusters (GC) with enhanced metallicity (F. – v. A. & Gerhard 1994, A&A 285, 751 u.775). HST imaging of NGC 7252, NGC 4038/39 and NGC 1275 revealed rich populations of bright young star clusters (YSC).


1999 ◽  
Vol 186 ◽  
pp. 251-260
Author(s):  
Bradley C. Whitmore

The formation of young star clusters in merging galaxies is, by now, well established. The new challenge is to use these young clusters as a tool to address some of the outstanding questions. For example, what fraction of these young clusters become globular clusters? Is this enough to explain the difference in the specific globular cluster frequencies for spirals and ellipticals? What is it about the collision between two gas-rich galaxies that triggers giant molecular clouds to form star clusters? Can the star clusters be used to age date merger remnants and establish a convincing evolutionary connection between merging spirals and elliptical galaxies? This review will focus on the last of these items.


2016 ◽  
Vol 458 (1) ◽  
pp. 624-659 ◽  
Author(s):  
Paul A. Crowther ◽  
S. M. Caballero-Nieves ◽  
K. A. Bostroem ◽  
J. Maíz Apellániz ◽  
F. R. N. Schneider ◽  
...  

2019 ◽  
Vol 490 (1) ◽  
pp. L67-L70 ◽  
Author(s):  
Alison Sills ◽  
Emanuele Dalessandro ◽  
Mario Cadelano ◽  
Mayte Alfaro-Cuello ◽  
J M Diederik Kruijssen

ABSTRACT The cluster M54 lies at the centre of the Sagittarius dwarf spheroidal galaxy, and therefore may be the closest example of a nuclear star cluster. Either in situ star formation, inspiralling globular clusters, or a combination have been invoked to explain the wide variety of stellar sub-populations in nuclear star clusters. Globular clusters are known to exhibit light element variations, which can be identified using the photometric construct called a chromosome map. In this letter, we create chromosome maps for three distinct age-metallicity sub-populations in the vicinity of M54. We find that the old, metal-poor population shows the signature of light element variations, while the young and intermediate-age metal rich populations do not. We conclude that the nucleus of Sagittarius formed through a combination of in situ star formation and globular cluster accretion. This letter demonstrates that properly constructed chromosome maps of iron-complex globular clusters can provide insight into the formation locations of the different stellar populations.


2019 ◽  
Vol 15 (S352) ◽  
pp. 350-352
Author(s):  
Kathryn Grasha ◽  
Daniela Calzetti

AbstractStar formation provides insight into the physical processes that govern the transformation of gas into stars. A key missing piece in a predictive theory of star formation is the link between scales of individual stars and star clusters up to entire galaxies. LEGUS is now providing the information to test the overall organization and spatial evolution of star formation. We present our latest findings of using star clusters from LEGUS combined with ALMA CO observations to investigate the transition from molecular gas to star formation in local galaxies. This work paves the way for future JWST observations of the embedded phase of star formation, the last missing ingredient to connect young star clusters and their relation with gas reservoirs. Multi-wavelength studies of local galaxies and their stellar and gas components will help shed light on early phases of galaxy evolution and properties of the ISM at high-z.


Sign in / Sign up

Export Citation Format

Share Document