internal velocity
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Steen H Hansen

Abstract The accelerated expansion of the universe has been established through observations of supernovae, the growth of structure, and the cosmic microwave background. The most popular explanation is Einsteins cosmological constant, or dynamic variations hereof. A recent paper demonstrated that if dark matter particles are endowed with a repulsive force proportional to the internal velocity dispersion of galaxies, then the corresponding acceleration of the universe may follow that of a cosmological constant fairly closely. However, no such long-range force is known to exist. A concrete example of such a force is derived here, by equipping the dark matter particles with two new dark charges. This result lends support to the possibility that the current acceleration of the universe may be explained without the need for a cosmological constant.


2019 ◽  
Vol 492 (2) ◽  
pp. 1594-1613 ◽  
Author(s):  
Rowan J Smith ◽  
Robin G Treß ◽  
Mattia C Sormani ◽  
Simon C O Glover ◽  
Ralf S Klessen ◽  
...  

ABSTRACT We introduce a new suite of simulations, ‘The Cloud Factory’, which self-consistently forms molecular cloud complexes at high enough resolution to resolve internal substructure (up to 0.25 M⊙ in mass) all while including galactic-scale forces. We use a version of the arepo code modified to include a detailed treatment of the physics of the cold molecular ISM, and an analytical galactic gravitational potential for computational efficiency. The simulations have nested levels of resolution, with the lowest layer tied to tracer particles injected into individual cloud complexes. These tracer refinement regions are embedded in the larger simulation so continue to experience forces from outside the cloud. This allows the simulations to act as a laboratory for testing the effect of galactic environment on star formation. Here we introduce our method and investigate the effect of galactic environment on filamentary clouds. We find that cloud complexes formed after a clustered burst of feedback have shorter lengths and are less likely to fragment compared to quiescent clouds (e.g. the Musca filament) or those dominated by the galactic potential (e.g. Nessie). Spiral arms and differential rotation preferentially align filaments, but strong feedback randomizes them. Long filaments formed within the cloud complexes are necessarily coherent with low internal velocity gradients, which has implications for the formation of filamentary star-clusters. Cloud complexes formed in regions dominated by supernova feedback have fewer star-forming cores, and these are more widely distributed. These differences show galactic-scale forces can have a significant impact on star formation within molecular clouds.


2019 ◽  
Vol 886 (2) ◽  
pp. 119 ◽  
Author(s):  
Hope How-Huan Chen ◽  
Jaime E. Pineda ◽  
Stella S. R. Offner ◽  
Alyssa A. Goodman ◽  
Andreas Burkert ◽  
...  

2019 ◽  
Vol 489 (3) ◽  
pp. 3665-3669
Author(s):  
Duncan A Forbes ◽  
Adebusola Alabi ◽  
Jean P Brodie ◽  
Aaron J Romanowsky

ABSTRACT The NGC 1052 group, and in particular the discovery of two ultra-diffuse galaxies with very low internal velocity dispersions, has been the subject of much attention recently. Here we present radial velocities for a sample of 77 globular clusters associated with NGC 1052 obtained on the Keck telescope. Their mean velocity and velocity dispersion are consistent with that of the host galaxy. Using a simple tracer mass estimator, we infer the enclosed dynamical mass and dark matter fraction of NGC 1052. Extrapolating our measurements with a Navarro–Frenk–White (NFW) mass profile we infer a total halo mass of 6.2(±0.2) × 1012 M⊙. This mass is fully consistent with that expected from the stellar mass–halo mass relation, suggesting that NGC 1052 has a normal dark matter halo mass (i.e. it is not deficient in dark matter in contrast to two ultra-diffuse galaxies in the group). We present a phase-space diagram showing the galaxies that lie within the projected virial radius (390 kpc) of NGC 1052. Finally, we briefly discuss the two dark matter-deficient galaxies (NGC 1052-DF2 and NGC 1052-DF4) and consider whether modified Newtonian dynamics (MOND) can account for their low observed internal velocity dispersions.


2019 ◽  
Vol 14 (S351) ◽  
pp. 422-425
Author(s):  
D. Chen ◽  
L. Chen ◽  
J. J. Wang

AbstractWe have used the Hubble Space Telescope (HST) observations to measure proper motion of the globular cluster NGC 6656 (M22) with respect to the background bulge stars and its internal velocity dispersion profile. Based on the proper motion of the clusters, its space velocity and orbit are also calculated. The central velocity dispersion in radial and tangential components of the internal motion of cluster stars is 16.99 km s−1. We derive the mass-to-light ratio M/LV∼3.3 ± 0.2 which is relatively higher than the previous works.


2019 ◽  
Vol 868 ◽  
pp. 666-697 ◽  
Author(s):  
I. U. Atthanayake ◽  
P. Denissenko ◽  
Y. M. Chung ◽  
P. J. Thomas

Results of comprehensive particle image velocimetry measurements investigating the dynamics of turbulent jets in a rotating fluid are presented. It is observed that background system rotation induces a time-periodic formation–breakdown cycle of the jets. The flow dynamics associated with this process is studied in detail. It is found that the frequency of the cycle increases linearly with the background rotation rate. The data show that the onset of the breakdown phase and of the reformation phase of the cycle can be characterized in terms of a local Rossby number employing an internal velocity and a length scale of the jet. The critical values for this local Rossby number, for onset of breakdown and reformation, scale linearly with a global Rossby number based on the flow conditions at the source. The analysis of the experimental data suggests centrifugal instability as the potential origin of the formation–breakdown cycle.


2018 ◽  
Vol 609 ◽  
pp. A44 ◽  
Author(s):  
G. F. Thomas ◽  
B. Famaey ◽  
R. Ibata ◽  
F. Renaud ◽  
N. F. Martin ◽  
...  

Kinematically cold tidal streams of globular clusters (GC) are excellent tracers of the Galactic gravitational potential at moderate Galactocentric distances, and can also be used as probes of the law of gravity on Galactic scales. Here, we compare for the first time the generation of such streams in Newtonian and Milgromian gravity (MOND). We first computed analytical results to investigate the expected shape of the GC gravitational potential in both frameworks, and we then ran N-body simulations with the Phantom of Ramses code. We find that the GCs tend to become lopsided in MOND. This is a consequence of the external field effect which breaks the strong equivalence principle. When the GC is filling its tidal radius the lopsidedness generates a strongly asymmetric tidal stream. In Newtonian dynamics, such markedly asymmetric streams can in general only be the consequence of interactions with dark matter subhalos, giant molecular clouds, or interaction with the Galactic bar. In these Newtonian cases, the asymmetry is the consequence of a very large gap in the stream, whilst in MOND it is a true asymmetry. This should thus allow us in the future to distinguish these different scenarios by making deep observations of the environment of the asymmetric stellar stream of Palomar 5. Moreover, our simulations indicate that the high internal velocity dispersion of Palomar 5 for its small stellar mass would be natural in MOND.


Sign in / Sign up

Export Citation Format

Share Document