scholarly journals Light element variations within the different age-metallicity populations in the nucleus of the Sagittarius dwarf

2019 ◽  
Vol 490 (1) ◽  
pp. L67-L70 ◽  
Author(s):  
Alison Sills ◽  
Emanuele Dalessandro ◽  
Mario Cadelano ◽  
Mayte Alfaro-Cuello ◽  
J M Diederik Kruijssen

ABSTRACT The cluster M54 lies at the centre of the Sagittarius dwarf spheroidal galaxy, and therefore may be the closest example of a nuclear star cluster. Either in situ star formation, inspiralling globular clusters, or a combination have been invoked to explain the wide variety of stellar sub-populations in nuclear star clusters. Globular clusters are known to exhibit light element variations, which can be identified using the photometric construct called a chromosome map. In this letter, we create chromosome maps for three distinct age-metallicity sub-populations in the vicinity of M54. We find that the old, metal-poor population shows the signature of light element variations, while the young and intermediate-age metal rich populations do not. We conclude that the nucleus of Sagittarius formed through a combination of in situ star formation and globular cluster accretion. This letter demonstrates that properly constructed chromosome maps of iron-complex globular clusters can provide insight into the formation locations of the different stellar populations.

2020 ◽  
Vol 492 (4) ◽  
pp. 4858-4873 ◽  
Author(s):  
Chong-Chong He ◽  
Massimo Ricotti ◽  
Sam Geen

ABSTRACT We calculate the hydrogen- and helium-ionizing radiation escaping star-forming molecular clouds, as a function of the star cluster mass and compactness, using a set of high-resolution radiation-magnetohydrodynamic simulations of star formation in self-gravitating, turbulent molecular clouds. In these simulations, presented in He et al., the formation of individual massive stars is well resolved, and their UV radiation feedback and lifetime on the main sequence are modelled self-consistently. We find that the escape fraction of ionizing radiation from molecular clouds, $\langle f_{\rm esc}^{\scriptscriptstyle \rm MC}\rangle$ , decreases with increasing mass of the star cluster and with decreasing compactness. Molecular clouds with densities typically found in the local Universe have negligible $\langle f_{\rm esc}^{\scriptscriptstyle \rm MC}\rangle$ , ranging between $0.5{{\ \rm per\ cent}}$ and $5{{\ \rm per\ cent}}$. 10 times denser molecular clouds have $\langle f_{\rm esc}^{\scriptscriptstyle \rm MC}\rangle$ $\approx 10{{\ \rm per\ cent}}{-}20{{\ \rm per\ cent}}$, while 100× denser clouds, which produce globular cluster progenitors, have $\langle f_{\rm esc}^{\scriptscriptstyle \rm MC}\rangle$ $\approx 20{{\ \rm per\ cent}}{-}60{{\ \rm per\ cent}}$. We find that $\langle f_{\rm esc}^{\scriptscriptstyle \rm MC}\rangle$ increases with decreasing gas metallicity, even when ignoring dust extinction, due to stronger radiation feedback. However, the total number of escaping ionizing photons decreases with decreasing metallicity because the star formation efficiency is reduced. We conclude that the sources of reionization at z > 6 must have been very compact star clusters forming in molecular clouds about 100× denser than in today’s Universe, which lead to a significant production of old globular clusters progenitors.


2020 ◽  
Vol 495 (2) ◽  
pp. 2247-2264
Author(s):  
Evelyn J Johnston ◽  
Thomas H Puzia ◽  
Giuseppe D’Ago ◽  
Paul Eigenthaler ◽  
Gaspar Galaz ◽  
...  

ABSTRACT Clues to the formation and evolution of nuclear star clusters (NSCs) lie in their stellar populations. However, these structures are often very faint compared to their host galaxy, and spectroscopic analysis of NSCs is hampered by contamination of light from the rest of the system. With the introduction of wide-field integral field unit (IFU) spectrographs, new techniques have been developed to model the light from different components within galaxies, making it possible to cleanly extract the spectra of the NSCs and study their properties with minimal contamination from the light of the rest of the galaxy. This work presents the analysis of the NSCs in a sample of 12 dwarf galaxies in the Fornax Cluster observed with the Multi-Unit Spectroscopic Explorer (MUSE). Analysis of the stellar populations and star formation histories reveal that all the NSCs show evidence of multiple episodes of star formation, indicating that they have built up their mass further since their initial formation. The NSCs were found to have systematically lower metallicities than their host galaxies, which is consistent with a scenario for mass assembly through mergers with infalling globular clusters, whilst the presence of younger stellar populations and gas emission in the core of two galaxies is indicative of in-situ star formation. We conclude that the NSCs in these dwarf galaxies likely originated as globular clusters that migrated to the core of the galaxy that have built up their mass mainly through mergers with other infalling clusters, with gas-inflow leading to in-situ star formation playing a secondary role.


2005 ◽  
Vol 13 ◽  
pp. 366-368
Author(s):  
Peter Anders ◽  
Uta Fritze – v. Alvensleben ◽  
Richard de Grijs

AbstractStar cluster formation is a major mode of star formation in the extreme conditions of interacting galaxies and violent starbursts. Young clusters are observed to form in a variety of such galaxies, a substantial number resembling the progenitors of globular clusters in mass and size, but with significantly enhanced metallicity. From studies of the metal-poor and metal-rich star cluster populations of galaxies, we can therefore learn about the violent star formation history of these galaxies, and eventually about galaxy formation and evolution. We present a new set of evolutionary synthesis models of our GALEV code, with special emphasis on the gaseous emission of presently forming star clusters, and a new tool to compare extensive model grids with multi-color broad-band observations to determine individual cluster masses, metallicities, ages and extinction values independently. First results for young star clusters in the dwarf starburst galaxy NGC 1569 are presented. The mass distributions determined for the young clusters give valuable input to dynamical star cluster system evolution models, regarding survival and destruction of clusters. We plan to investigate an age sequence of galaxy mergers to see dynamical destruction effects in process.


2007 ◽  
Vol 3 (S246) ◽  
pp. 71-72
Author(s):  
J. Pflamm-Altenburg ◽  
P. Kroupa

AbstractThe existence of complex stellar populations in some star clusters challenges the understanding of star formation. E.g. the ONC or the sigma Orionis cluster host much older stars than the main bulk of the young stars. Massive star clusters (ω Cen, G1, M54) show metallicity spreads corresponding to different stellar populations with large age gaps. We show that (i) during star cluster formation field stars can be captured and (ii) very massive globular clusters can accrete gas from a long-term embedding inter stellar medium and restart star formation.


1994 ◽  
Vol 72 (11-12) ◽  
pp. 772-781 ◽  
Author(s):  
Michael M. Briley ◽  
Roger A. Bell ◽  
James E. Hesser ◽  
Graeme H. Smith

Abundance patterns of the elements C, N, and O are sensitive probes of stellar nucleosynthesis processes and, in addition, O abundances are an important input for stellar age determinations. Understanding the nature of the observed distribution of these elements is key to constraining protogalactic star formation history. Patterns deduced from low-resolution spectroscopy of the CN, CH, NH, and CO molecules for low-mass stars in their core-hydrogen or first shell-hydrogen burning phases in the oldest ensembles known, the Galactic globular star clusters, are reviewed. New results for faint stars in NGC 104 (47 Tuc, C0021-723) reveal that the bimodal, anticorrelated pattern of CN and CH strengths found among luminous evolved stars is also present in stars nearing the end of their main-sequence lifetimes. In the absence of known mechanisms to mix newly synthesized elements from the interior to the observable surface layers of such unevolved stars, those particular inhomogeneities imply that the original material from which the stars formed some 15 billion years ago was chemically inhomogeneous in the C and N elements. However, in other clusters, observations of abundance ratios and C isotope ratios suggest that alterations to surface chemical compositions are produced as stars evolve from the main sequence through the red giant branch. Thus, the current observed distributions of C, N, and O among the brightest stars (those also observed most often) may not reflect the true distribution from which the protocluster cloud formed. The picture that is emerging of the C, N, and O abundance patterns within globular clusters may be one which requires a complicated combination of stellar evolutionary and primordial effects for its explanation.


2019 ◽  
Vol 14 (S351) ◽  
pp. 19-23
Author(s):  
David Yong

AbstractObservations of stellar chemical compositions enable us to identify connections between globular clusters and stellar populations in the Milky Way. In particular, chemical abundance ratios provide detailed insight into the chemical enrichment histories of star clusters and the field populations. For some elements, there are striking differences between field and cluster stars which reflect different nucleosynthetic processes and/or chemical evolution. The goal of this talk was to provide an overview of similarities and differences in chemical compositions between globular clusters and the Milky Way as well as highlighting a few areas for further examination.


2020 ◽  
Vol 497 (3) ◽  
pp. 3830-3845 ◽  
Author(s):  
Hajime Fukushima ◽  
Hidenobu Yajima ◽  
Kazuyuki Sugimura ◽  
Takashi Hosokawa ◽  
Kazuyuki Omukai ◽  
...  

ABSTRACT We study star cluster formation in various environments with different metallicities and column densities by performing a suite of 3D radiation hydrodynamics simulations. We find that the photoionization feedback from massive stars controls the star formation efficiency (SFE) in a star-forming cloud, and its impact sensitively depends on the gas metallicity Z and initial cloud surface density Σ. At Z = 1 Z⊙, SFE increases as a power law from 0.03 at Σ = 10 M⊙ pc−2 to 0.3 at $\Sigma = 300\,\mathrm{M}_{\odot }\, {\rm pc^{-2}}$. In low-metallicity cases $10^{-2}\!-\!10^{-1}\, \mathrm{Z}_{\odot }$, star clusters form from atomic warm gases because the molecule formation time is not short enough with respect to the cooling or dynamical time. In addition, the whole cloud is disrupted more easily by expanding H ii bubbles that have higher temperature owing to less efficient cooling. With smaller dust attenuation, the ionizing radiation feedback from nearby massive stars is stronger and terminate star formation in dense clumps. These effects result in inefficient star formation in low-metallicity environments: the SFE drops by a factor of ∼3 at Z = 10−2 Z⊙ compared to the results for Z = 1 Z⊙, regardless of Σ. Newborn star clusters are also gravitationally less bound. We further develop a new semi-analytical model that can reproduce the simulation results well, particularly the observed dependencies of the SFEs on the cloud surface densities and metallicities.


2019 ◽  
Vol 14 (S351) ◽  
pp. 47-50
Author(s):  
M. Alfaro-Cuello ◽  
N. Kacharov ◽  
N. Neumayer ◽  
A. Mastrobuono-Battisti ◽  
N. Lützgendorf ◽  
...  

AbstractNuclear star clusters hosted by dwarf galaxies exhibit similar characteristics to high-mass, metal complex globular clusters. This type of globular clusters could, therefore, be former nuclei from accreted galaxies. M54 resides in the photometric center of the Sagittarius dwarf galaxy, at a distance where resolving stars is possible. M54 offers the opportunity to study a nucleus before the stripping of their host by the tidal field effects of the Milky Way. We use a MUSE data set to perform a detailed analysis of over 6600 stars. We characterize the stars by metallicity, age, and kinematics, identifying the presence of three stellar populations: a young metal-rich (YMR), an intermediate-age metal-rich (IMR), and an old metal-poor (OMP). The evidence suggests that the OMP population is the result of accretion of globular clusters in the center of the host, while the YMR population was born in-situ in the center of the OMP population.


Author(s):  
William E. Harris

The ensemble of all star clusters in a galaxy constitutes its star cluster system . In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.


2002 ◽  
Vol 207 ◽  
pp. 439-444
Author(s):  
Yu Zhi-yao

In this paper we study the relationship between the star formation efficiency and luminosity of Hα emission, Lyman continuum radiation, and Hβ emission on 35 giant extragalactic HII regions in seven galaxies. Using the observational results we obtain the relationship, and find that the star formation efficiency is correlation with Halpha luminocity, and Lyman continuum luminosity, and Hβ lumonosity, respectively. Key words: external galaxy—giant HII region—star cluster


Sign in / Sign up

Export Citation Format

Share Document